This demonstrates how to use the RCapstone package.
Start by loading in the data.
raw_data<-readr::read_tsv(system.file("extdata", "signif.txt", package = "RCapstone"))
Then we can clean up the columns using eq_clean_data and eq_location_clean.
clean_data<-RCapstone::eq_clean_data(raw_data) clean_data<-RCapstone::eq_location_clean(clean_data)
We can now visualise this data two different ways.
One is as a line plot of earthquakes over time.
c1<-subset(clean_data,COUNTRY %in% c("USA","CHINA")) c2<-dplyr::filter(c1,!is.na(EQ_PRIMARY), !is.na(DEATHS)) ggplot2::ggplot(data=c2) + ggplot2::aes( x = DATE, size = EQ_PRIMARY, colour = DEATHS, group=COUNTRY ) + RCapstone::geom_timeline()
And can add labels for the top sized earthquakes. Note that it will match any earthquakes to the top n values.
c1<-subset(clean_data,COUNTRY %in% c("USA","CHINA")) c2<-dplyr::filter(c1,!is.na(EQ_PRIMARY), !is.na(DEATHS)) ggplot2::ggplot(data=c2) + ggplot2::aes( x = DATE, size = EQ_PRIMARY, colour = DEATHS, group=COUNTRY, label=LOCATION_NAME ) + RCapstone::geom_timeline() + RCapstone::geom_timeline_label()
The other way is spatially. We can start with a basic map.
c1<-dplyr::filter(clean_data,COUNTRY == "MEXICO" & lubridate::year(DATE) >= 2000) RCapstone::eq_map(c1,annot_col = "DATE")
We can improve this with better annotations.
c1<-dplyr::filter(clean_data,COUNTRY == "MEXICO" & lubridate::year(DATE) >= 2000) c2<-dplyr::mutate(c1,popup_text = RCapstone::eq_create_label(c1)) RCapstone::eq_map(c1,annot_col = "popup_text")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.