mmm_predictions | R Documentation |
Calculate the posterior predictions from the likelihood profiles and priors. Implements equation 7.1 (p154) from Steffen's thesis.
mmm_predictions( data, outcomes, fixed_formula_nofail, random_formula_nofail, random_effects_nofail, parameters_nofail, fixed_formula_fail, random_formula_fail, random_effects_fail, parameters_fail, time, failure, failure_time, prior, id, landmark = 0, horizon, interval, ... )
data |
a data.frame with the data for which to predict in the long format (input should be the same as likelihood_profiles) |
outcomes |
character vector with the outcomes |
fixed_formula_nofail |
formula for the fixed effects of the nofail model |
random_formula_nofail |
formula for the random effects of the nofail model, |
random_effects_nofail |
random effect estimates for the no fail model (see MASS::mvnorm) |
parameters_nofail |
parameter estimates from the non-failures model (see mmm_model) |
fixed_formula_fail |
formula for the fixed effects of the fail model, |
random_formula_fail |
formula for the random effects of the fail model, |
random_effects_fail |
random effect estimates for the fail model (see MASS::mvnorm), |
parameters_fail |
parameter estimates from the non-failures model (see mmm_model) |
time |
a character string with the time variable name in data |
failure |
a character string with the failure variable name in data |
failure_time |
a character string with the failure time variable in data |
prior |
the priors returned by get_priors(). |
id |
a character string with the subject id |
landmark |
a numeric value indicating the prediction landmark until which data is available for prediction. |
horizon |
the prediction horizon (maximum follow-up time) |
interval |
the intervals relative to the horizon (e.g. 1/12 for monthly intervals and horizon is in years) |
a data.frame with the posterior predictions for each subject at every landmark up to the horizon
## Not run: # First retrieve random effects samples from a fitted model mu <- setNames(rep(0, length(outcomes)), outcomes) re_samples_nofail <- MASS:mvrnorm(1e3,mu = mu, Sigma = model_nofail$vcov) re_samples_fail <- MASS:mvrnorm(1e3,mu = mu, Sigma = model_fail$vcov) # Get the priors prior <- get_priors(data = df, time_failure = "time_failure", failure = "failure", horizon = 5, interval = 1/12) # get the outcomes types outcome_types <- get_outcome_type(data = df, outcomes) # Select a single subject df_pred <- df %>% filter(id == 10) mmm_predictions( data=df, outcomes=outcome_types, fixed_formula_nofail="~ y1 + y2 + y3 + y4 + time + sex", random_formula_nofail="~ 1| id", random_effects_nofail=re_samples_nofail, parameters_nofail=model_nofail$estimates, fixed_formula_fail="~ y1 + y2 + y3 + y4 + time + sex + time_failure", random_formula_fail="~ 1 | id", random_effects_fail=re_samples_fail, parameters_fail=model_fail$estimates, time="time", failure="failure", failure_time="time_failure", prior=prior, id="id", landmark=1, horizon=5, interval=1/4 ) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.