library(knitr) opts_chunk$set(fig.align = "center", out.width = "90%", fig.width = 6, fig.height = 5.5, dev.args=list(pointsize=10), par = TRUE, # needed for setting hook collapse = TRUE, # collapse input & ouput code in chunks warning = FALSE) knit_hooks$set(par = function(before, options, envir) { if(before && options$fig.show != "none") par(family = "sans", mar=c(4.1,4.1,1.1,1.1), mgp=c(3,1,0), tcl=-0.5) }) set.seed(1) # for exact reproducibility
mclust is a contributed R package for model-based clustering, classification, and density estimation based on finite normal mixture modelling. It provides functions for parameter estimation via the EM algorithm for normal mixture models with a variety of covariance structures, and functions for simulation from these models. Also included are functions that combine model-based hierarchical clustering, EM for mixture estimation and the Bayesian Information Criterion (BIC) in comprehensive strategies for clustering, density estimation and discriminant analysis. Additional functionalities are available for displaying and visualizing fitted models along with clustering, classification, and density estimation results.
This document gives a quick tour of mclust (version r packageVersion("mclust")
) functionalities. It was written in R Markdown, using the knitr package for production.
See help(package="mclust")
for further details and references provided by citation("mclust")
.
library(mclust) cat(mclust:::mclustStartupMessage(), sep="")
data(diabetes) class <- diabetes$class table(class) X <- diabetes[,-1] head(X) clPairs(X, class) BIC <- mclustBIC(X) plot(BIC) summary(BIC) mod1 <- Mclust(X, x = BIC) summary(mod1, parameters = TRUE) plot(mod1, what = "classification") table(class, mod1$classification) plot(mod1, what = "uncertainty") ICL <- mclustICL(X) summary(ICL) plot(ICL) LRT <- mclustBootstrapLRT(X, modelName = "VVV") LRT
EM algorithm is used by mclust for maximum likelihood estimation. Initialisation of EM is performed using the partitions obtained from agglomerative hierarchical clustering. For details see help(mclustBIC)
or help(Mclust)
, and help(hc)
.
(hc1 <- hc(X, modelName = "VVV", use = "SVD")) BIC1 <- mclustBIC(X, initialization = list(hcPairs = hc1)) # default summary(BIC1) (hc2 <- hc(X, modelName = "VVV", use = "VARS")) BIC2 <- mclustBIC(X, initialization = list(hcPairs = hc2)) summary(BIC2) (hc3 <- hc(X, modelName = "EEE", use = "SVD")) BIC3 <- mclustBIC(X, initialization = list(hcPairs = hc3)) summary(BIC3)
Update BIC by merging the best results:
BIC <- mclustBICupdate(BIC1, BIC2, BIC3) summary(BIC) plot(BIC)
Univariate fit using random starting points obtained by creating random agglomerations (see help(randomPairs)
) and merging best results:
set.seed(20181116) data(galaxies, package = "MASS") galaxies <- galaxies / 1000 BIC <- NULL for(j in 1:20) { rBIC <- mclustBIC(galaxies, verbose = FALSE, initialization = list(hcPairs = randomPairs(galaxies))) BIC <- mclustBICupdate(BIC, rBIC) } summary(BIC) plot(BIC) mod <- Mclust(galaxies, x = BIC) summary(mod)
data(iris) class <- iris$Species table(class) X <- iris[,1:4] head(X) mod2 <- MclustDA(X, class, modelType = "EDDA") summary(mod2) plot(mod2, what = "scatterplot") plot(mod2, what = "classification")
data(banknote) class <- banknote$Status table(class) X <- banknote[,-1] head(X) mod3 <- MclustDA(X, class) summary(mod3) plot(mod3, what = "scatterplot") plot(mod3, what = "classification")
cv <- cvMclustDA(mod2, nfold = 10) str(cv) unlist(cv[3:4]) cv <- cvMclustDA(mod3, nfold = 10) str(cv) unlist(cv[3:4])
data(acidity) mod4 <- densityMclust(acidity) summary(mod4) plot(mod4, what = "BIC") plot(mod4, what = "density", data = acidity, breaks = 15) plot(mod4, what = "diagnostic", type = "cdf") plot(mod4, what = "diagnostic", type = "qq")
data(faithful) mod5 <- densityMclust(faithful) summary(mod5) plot(mod5, what = "BIC") plot(mod5, what = "density") plot(mod5, what = "density", type = "hdr") plot(mod5, what = "density", type = "hdr", data = faithful, points.cex = 0.5) plot(mod5, what = "density", type = "persp")
boot1 <- MclustBootstrap(mod1, nboot = 999, type = "bs") summary(boot1, what = "se") summary(boot1, what = "ci") par(mfrow=c(4,3)) plot(boot1, what = "pro") plot(boot1, what = "mean") par(mfrow=c(1,1))
boot4 <- MclustBootstrap(mod4, nboot = 999, type = "bs") summary(boot4, what = "se") summary(boot4, what = "ci") par(mfrow=c(2,2)) plot(boot4, what = "pro") plot(boot4, what = "mean") par(mfrow=c(1,1))
mod1dr <- MclustDR(mod1) summary(mod1dr) plot(mod1dr, what = "pairs") plot(mod1dr, what = "boundaries", ngrid = 200) mod1dr <- MclustDR(mod1, lambda = 1) summary(mod1dr) plot(mod1dr, what = "scatterplot") plot(mod1dr, what = "boundaries", ngrid = 200)
mod2dr <- MclustDR(mod2) summary(mod2dr) plot(mod2dr, what = "scatterplot") plot(mod2dr, what = "boundaries", ngrid = 200) mod3dr <- MclustDR(mod3) summary(mod3dr) plot(mod3dr, what = "scatterplot") plot(mod3dr, what = "boundaries", ngrid = 200)
Most of the graphs produced by mclust use colors that by default are defined in the following options:
mclust.options("bicPlotColors") mclust.options("classPlotColors")
The first option controls colors used for plotting BIC, ICL, etc. curves, whereas the second option is used to assign colors for indicating clusters or classes when plotting data.
Color-blind-friendly palettes can be defined and assigned to the above options as follows:
cbPalette <- c("#E69F00", "#56B4E9", "#009E73", "#999999", "#F0E442", "#0072B2", "#D55E00", "#CC79A7") bicPlotColors <- mclust.options("bicPlotColors") bicPlotColors[1:14] <- c(cbPalette, cbPalette[1:6]) mclust.options("bicPlotColors" = bicPlotColors) mclust.options("classPlotColors" = cbPalette) clPairs(iris[,-5], iris$Species) mod <- Mclust(iris[,-5]) plot(mod, what = "BIC") plot(mod, what = "classification")
The above color definitions are adapted from http://www.cookbook-r.com/Graphs/Colors_(ggplot2)/, but users can easily define their own palettes if needed.
Scrucca L., Fop M., Murphy T. B. and Raftery A. E. (2016) mclust 5: clustering, classification and density estimation using Gaussian finite mixture models, The R Journal, 8/1, pp. 205-233. https://journal.r-project.org/archive/2016/RJ-2016-021/RJ-2016-021.pdf
Fraley C. and Raftery A. E. (2002) Model-based clustering, discriminant analysis and density estimation, Journal of the American Statistical Association, 97/458, pp. 611-631.
Fraley C., Raftery A. E., Murphy T. B. and Scrucca L. (2012) mclust Version 4 for R: Normal Mixture Modeling for Model-Based Clustering, Classification, and Density Estimation. Technical Report No. 597, Department of Statistics, University of Washington.
sessionInfo()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.