This package is designed to allow users to extract game data from popular online chess platforms. The platforms currently supported in this package include:
These websites offer a very convenient set of APIs to be able to access data and documentation to these can be found here for chess.com and here for Lichess.
You can install the CRAN version of chessR
with:
install.packages("chessR")
You can install the released version of chessR
from GitHub with:
# install.packages("devtools") devtools::install_github("JaseZiv/chessR")
library(chessR)
The functions available in this package are designed to enable the extraction of chess game data.
The functions detailed below relate to extracting data from the chess gaming sites currently supported in this package.
The game extraction functions can take a vector of either single or multiple usernames. It will output a data frame with all the games played by that user.
As of version 1.2.2, get_raw_chessdotcom()
now accepts an additional argument called year_month
, a six digit integer of YYYYMM, which allows users to filter on which month(s) data is required for.
The functions are below.
Note: These functions query an API, which is rate limited. The limiting rates for chess.com are unknown. For Lichess, the limit is throttled to 15 games per second. Queries could therefore take a few minutes if you're querying a lot of games.
# function to extract chess.com game data chessdotcom_game_data_all_months <- get_raw_chessdotcom(usernames = "JaseZiv") glimpse(chessdotcom_game_data_all_months) #> Rows: 432 #> Columns: 25 #> $ GameRules <chr> "chess", "chess", "chess", "chess", "chess", "chess", "chess", "chess", "chess", "c… #> $ TimeClass <chr> "blitz", "blitz", "blitz", "blitz", "blitz", "blitz", "blitz", "blitz", "blitz", "b… #> $ Event <chr> "Live Chess", "Live Chess", "Live Chess", "Live Chess", "Live Chess", "Live Chess",… #> $ Site <chr> "Chess.com", "Chess.com", "Chess.com", "Chess.com", "Chess.com", "Chess.com", "Ches… #> $ Date <chr> "2019-02-12", "2019-02-12", "2019-02-12", "2019-02-12", "2019-02-12", "2019-02-12",… #> $ Round <chr> "-", "-", "-", "-", "-", "-", "-", "-", "-", "-", "-", "-", "-", "-", "-", "-", "-"… #> $ White <chr> "JaseZiv", "Commander0101", "JaseZiv", "oscarbazan", "JaseZiv", "rojarosy", "JaseZi… #> $ Black <chr> "hKotla", "JaseZiv", "oscarbazan", "JaseZiv", "oscarbazan", "JaseZiv", "vinod87", "… #> $ Result <chr> "0-1", "1-0", "1-0", "1-0", "1-0", "0-1", "0-1", "0-1", "1-0", "0-1", "1-0", "0-1",… #> $ CurrentPosition <chr> "rn4nr/pbB1kppp/4pq2/2pp2N1/4P2K/6P1/7P/5B1R w - -", "7Q/2kp1ppp/4pn2/1B6/pb1P4/4PN… #> $ Timezone <chr> "UTC", "UTC", "UTC", "UTC", "UTC", "UTC", "UTC", "UTC", "UTC", "UTC", "UTC", "UTC",… #> $ ECO <chr> "C00", "A40", "B00", "D02", "B00", "B40", "B00", "A00", "C42", "A04", "B21", "B50",… #> $ ECOUrl <chr> "https://www.chess.com/openings/French-Defense-Reti-Spielmann-Attack", "https://www… #> $ UTCDate <chr> "2019.02.12", "2019.02.12", "2019.02.12", "2019.02.12", "2019.02.12", "2019.02.12",… #> $ UTCTime <chr> "05:44:13", "07:45:57", "07:54:52", "07:55:50", "08:02:06", "08:39:19", "08:44:42",… #> $ WhiteElo <chr> "867", "757", "819", "792", "808", "797", "821", "773", "850", "722", "604", "704",… #> $ BlackElo <chr> "1102", "702", "783", "738", "783", "859", "922", "771", "744", "875", "680", "712"… #> $ TimeControl <chr> "180", "180", "180", "180", "180", "180", "180", "180", "180", "180", "180", "180",… #> $ Termination <chr> "hKotla won on time", "Commander0101 won on time", "JaseZiv won by checkmate", "osc… #> $ StartTime <chr> "05:44:13", "07:45:57", "07:54:52", "07:55:50", "08:02:06", "08:39:19", "08:44:42",… #> $ EndDate <chr> "2019-02-12", "2019-02-12", "2019-02-12", "2019-02-12", "2019-02-12", "2019-02-12",… #> $ EndTime <chr> "05:48:35", "07:51:41", "07:55:21", "08:01:40", "08:07:56", "08:43:42", "08:50:23",… #> $ Link <chr> "https://www.chess.com/game/live/3452526692", "https://www.chess.com/game/live/3452… #> $ Moves <chr> "1. e4 {[%clk 0:02:52.8]} 1... e6 {[%clk 0:02:59.8]} 2. g3 {[%clk 0:02:49.2]} 2... … #> $ Username <chr> "JaseZiv", "JaseZiv", "JaseZiv", "JaseZiv", "JaseZiv", "JaseZiv", "JaseZiv", "JaseZ…
# function to extract chess.com game data chessdotcom_hikaru_recent <- get_raw_chessdotcom(usernames = "Hikaru", year_month = c(202104:202105)) glimpse(chessdotcom_hikaru_recent) #> Rows: 903 #> Columns: 27 #> $ GameRules <chr> "chess", "chess", "chess", "chess", "chess", "chess", "chess", "chess", "chess", "c… #> $ TimeClass <chr> "bullet", "bullet", "bullet", "bullet", "bullet", "bullet", "bullet", "bullet", "bu… #> $ Event <chr> "Live Chess", "Live Chess", "Live Chess", "Live Chess", "Live Chess", "Live Chess",… #> $ Site <chr> "Chess.com", "Chess.com", "Chess.com", "Chess.com", "Chess.com", "Chess.com", "Ches… #> $ Date <chr> "2021-04-01", "2021-04-01", "2021-04-01", "2021-04-01", "2021-04-01", "2021-04-01",… #> $ Round <chr> "-", "-", "-", "-", "-", "-", "-", "-", "-", "-", "-", "-", "-", "-", "-", "-", "-"… #> $ White <chr> "Lempire123", "Hikaru", "GMSrinath", "Hikaru", "Msb2", "Hikaru", "DrVelja", "Hikaru… #> $ Black <chr> "Hikaru", "SchmakAttack", "Hikaru", "Sanan_Sjugirov", "Hikaru", "ToivoK3", "Hikaru"… #> $ Result <chr> "0-1", "1-0", "0-1", "0-1", "0-1", "1-0", "0-1", "1-0", "1/2-1/2", "1/2-1/2", "1-0"… #> $ CurrentPosition <chr> "1r1q1r1k/4n2p/p2pn1pP/1ppB4/P3Pp2/2NP4/1PP2PP1/2KR3R w - -", "1k2rb1r/pp3Bpp/8/4n2… #> $ Timezone <chr> "UTC", "UTC", "UTC", "UTC", "UTC", "UTC", "UTC", "UTC", "UTC", "UTC", "UTC", "UTC",… #> $ ECO <chr> "B06", "A06", "A04", "A04", "B06", "A06", "B15", "A34", "A40", "A01", "B11", "B06",… #> $ ECOUrl <chr> "https://www.chess.com/openings/Modern-Defense-with-1-e4-2.Nc3-Bg7", "https://www.c… #> $ UTCDate <chr> "2021.04.01", "2021.04.01", "2021.04.01", "2021.04.01", "2021.04.01", "2021.04.01",… #> $ UTCTime <chr> "16:00:00", "16:02:58", "16:05:37", "16:08:38", "16:11:43", "16:14:47", "16:17:39",… #> $ WhiteElo <chr> "2625", "3500", "2916", "3486", "2851", "3487", "3012", "3490", "3157", "3477", "34… #> $ BlackElo <chr> "3500", "2792", "3501", "2956", "3486", "2924", "3488", "3102", "3484", "3065", "31… #> $ TimeControl <chr> "60", "60", "60", "60", "60", "60", "60", "60", "60", "60", "60", "60", "60", "60",… #> $ Termination <chr> "Hikaru won by resignation", "Hikaru won by resignation", "Hikaru won on time", "Sa… #> $ StartTime <chr> "16:00:00", "16:02:58", "16:05:37", "16:08:38", "16:11:43", "16:14:47", "16:17:39",… #> $ EndDate <chr> "2021-04-01", "2021-04-01", "2021-04-01", "2021-04-01", "2021-04-01", "2021-04-01",… #> $ EndTime <chr> "16:01:09", "16:04:06", "16:08:15", "16:10:50", "16:13:18", "16:16:36", "16:20:13",… #> $ Link <chr> "https://www.chess.com/game/live/11031846815", "https://www.chess.com/game/live/110… #> $ Moves <chr> "1. e4 {[%clk 0:00:59.9]} 1... g6 {[%clk 0:00:59.9]} 2. Nc3 {[%clk 0:00:59.8]} 2...… #> $ SetUp <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,… #> $ FEN <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,… #> $ Username <chr> "Hikaru", "Hikaru", "Hikaru", "Hikaru", "Hikaru", "Hikaru", "Hikaru", "Hikaru", "Hi…
# function to extract lichess game data lichess_game_data <- get_raw_lichess("Georges", since = "2024-06-01") glimpse(lichess_game_data) #> Rows: 0 #> Columns: 0
The following function will extract the same data that the get_raw_chessdotcom()
function will, however this function will also include additional columns to make analysing data easier.
The function can be used either on a single player, or a character vector of multiple players.
Note: This is only available for chess.com extracts
chess_analysis_single <- get_game_data("JaseZiv")
glimpse(chess_analysis_single) #> Rows: 431 #> Columns: 36 #> $ rules <chr> "chess", "chess", "chess", "chess", "chess", "chess", "chess", "chess", "chess", "c… #> $ time_class <chr> "blitz", "blitz", "blitz", "blitz", "blitz", "blitz", "blitz", "blitz", "blitz", "b… #> $ Event <chr> "Live Chess", "Live Chess", "Live Chess", "Live Chess", "Live Chess", "Live Chess",… #> $ Site <chr> "Chess.com", "Chess.com", "Chess.com", "Chess.com", "Chess.com", "Chess.com", "Ches… #> $ Date <date> 2019-02-12, 2019-02-12, 2019-02-12, 2019-02-12, 2019-02-12, 2019-02-12, 2019-02-12… #> $ Round <chr> "-", "-", "-", "-", "-", "-", "-", "-", "-", "-", "-", "-", "-", "-", "-", "-", "-"… #> $ White <chr> "JaseZiv", "Commander0101", "JaseZiv", "oscarbazan", "JaseZiv", "rojarosy", "JaseZi… #> $ Black <chr> "hKotla", "JaseZiv", "oscarbazan", "JaseZiv", "oscarbazan", "JaseZiv", "vinod87", "… #> $ Result <chr> "0-1", "1-0", "1-0", "1-0", "1-0", "0-1", "0-1", "0-1", "1-0", "0-1", "1-0", "0-1",… #> $ CurrentPosition <chr> "rn4nr/pbB1kppp/4pq2/2pp2N1/4P2K/6P1/7P/5B1R w - -", "7Q/2kp1ppp/4pn2/1B6/pb1P4/4PN… #> $ Timezone <chr> "UTC", "UTC", "UTC", "UTC", "UTC", "UTC", "UTC", "UTC", "UTC", "UTC", "UTC", "UTC",… #> $ ECO <chr> "C00", "A40", "B00", "D02", "B00", "B40", "B00", "A00", "C42", "A04", "B21", "B50",… #> $ ECOUrl <chr> "https://www.chess.com/openings/French-Defense-Reti-Spielmann-Attack", "https://www… #> $ UTCDate <chr> "2019.02.12", "2019.02.12", "2019.02.12", "2019.02.12", "2019.02.12", "2019.02.12",… #> $ UTCTime <chr> "05:44:13", "07:45:57", "07:54:52", "07:55:50", "08:02:06", "08:39:19", "08:44:42",… #> $ WhiteElo <chr> "867", "757", "819", "792", "808", "797", "821", "773", "850", "722", "604", "704",… #> $ BlackElo <chr> "1102", "702", "783", "738", "783", "859", "922", "771", "744", "875", "680", "712"… #> $ TimeControl <chr> "180", "180", "180", "180", "180", "180", "180", "180", "180", "180", "180", "180",… #> $ Termination <chr> "hKotla won on time", "Commander0101 won on time", "JaseZiv won by checkmate", "osc… #> $ StartTime <chr> "05:44:13", "07:45:57", "07:54:52", "07:55:50", "08:02:06", "08:39:19", "08:44:42",… #> $ EndDate <date> 2019-02-12, 2019-02-12, 2019-02-12, 2019-02-12, 2019-02-12, 2019-02-12, 2019-02-12… #> $ EndTime <chr> "05:48:35", "07:51:41", "07:55:21", "08:01:40", "08:07:56", "08:43:42", "08:50:23",… #> $ Link <chr> "https://www.chess.com/game/live/3452526692", "https://www.chess.com/game/live/3452… #> $ Moves <chr> "\n1. e4 {[%clk 0:02:52.8]} 1... e6 {[%clk 0:02:59.8]} 2. g3 {[%clk 0:02:49.2]} 2..… #> $ winner <chr> "Black", "White", "White", "White", "White", "Black", "Black", "Black", "White", "B… #> $ Username <chr> "JaseZiv", "JaseZiv", "JaseZiv", "JaseZiv", "JaseZiv", "JaseZiv", "JaseZiv", "JaseZ… #> $ n_Moves <dbl> 21, 28, 5, 29, 25, 10, 26, 31, 35, 41, 29, 7, 35, 33, 29, 14, 2, 11, 19, 44, 13, 14… #> $ UserOpponent <chr> "hKotla", "Commander0101", "oscarbazan", "oscarbazan", "oscarbazan", "rojarosy", "v… #> $ UserColour <chr> "White", "Black", "White", "Black", "White", "Black", "White", "White", "Black", "W… #> $ OpponentColour <chr> "Black", "White", "Black", "White", "Black", "White", "Black", "Black", "White", "B… #> $ UserELO <dbl> 867, 702, 819, 738, 808, 859, 821, 773, 744, 722, 680, 712, 696, 680, 653, 625, 649… #> $ OpponentELO <dbl> 1102, 757, 783, 792, 783, 797, 922, 771, 850, 875, 604, 704, 884, 868, 692, 666, 52… #> $ UserResult <chr> "Loss", "Loss", "Win", "Loss", "Win", "Win", "Loss", "Loss", "Loss", "Loss", "Loss"… #> $ DaysTaken <drtn> 0 days, 0 days, 0 days, 0 days, 0 days, 0 days, 0 days, 0 days, 0 days, 0 days, 0 … #> $ GameEnding <chr> "on time", "on time", "by checkmate", "on time", "on time", "on time", "on time", "… #> $ Opening <chr> "Defense-Reti-Spielmann-Attack", "Pawn-Opening-Polish-Defense", "Pawn-Opening-St-Ge…
The leaderboards of each game platform can be extracted for a number of different games available on each platform. Each are discussed below:
The below function allows the user to extract the top 50 players of each game type specified. Game types available include:
"daily","daily960", "live_rapid", "live_blitz", "live_bullet", "live_bughouse", "live_blitz960", "live_threecheck", "live_crazyhouse", "live_kingofthehill", "lessons", "tactics"
The usernames that are contained in the results can then be passed to get_raw_chessdotcom
outlined above.
daily_leaders <- chessdotcom_leaderboard(game_type = "daily") glimpse(daily_leaders) #> Rows: 50 #> Columns: 16 #> $ player_id <int> 2305524, 32506052, 52897514, 7848044, 1946148, 1967855, 39668580, 44902306, 338211701, … #> $ url <chr> "https://www.chess.com/member/Zgorl", "https://www.chess.com/member/JolinTsai", "https:… #> $ username <chr> "Zgorl", "JolinTsai", "FormerProdigy", "francisbegbie", "dumplings", "cschess", "Castle… #> $ score <int> 2568, 2552, 2519, 2509, 2503, 2490, 2478, 2469, 2453, 2444, 2437, 2434, 2421, 2420, 241… #> $ rank <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, … #> $ country <chr> "https://api.chess.com/pub/country/NL", "https://api.chess.com/pub/country/TW", "https:… #> $ title <chr> "FM", "GM", "GM", "FM", NA, "FM", NA, "IM", NA, "FM", NA, "FM", NA, "CM", "IM", "IM", N… #> $ name <chr> "Rob Schoorl", "蔡依林", "David Navara", "Andy Mack", NA, "Charles Schulien", "Matt", "… #> $ status <chr> "premium", "premium", "premium", "premium", "premium", "premium", "premium", "premium",… #> $ avatar <chr> "https://images.chesscomfiles.com/uploads/v1/user/2305524.5341b605.200x200o.67a89f6c51b… #> $ trend_score <df[,2]> <data.frame[36 x 2]> #> $ trend_rank <df[,2]> <data.frame[36 x 2]> #> $ flair_code <chr> "white_bishop", "diamond_pink", "flag_ukraine", "diamond_traditional", "diamond_trad… #> $ win_count <int> 547, 446, 19, 726, 418, 107, 125, 391, 86, 443, 68, 113, 60, 369, 162, 267, 3, 24, 7… #> $ loss_count <int> 207, 9, 0, 4, 2, 11, 23, 3, 5, 119, 5, 24, 14, 19, 18, 23, 0, 7, 26, 62, 6, 13, 27, 24,… #> $ draw_count <int> 67, 52, 11, 6, 4, 23, 34, 13, 8, 74, 1, 26, 24, 56, 57, 54, 0, 13, 14, 7, 46, 32, 41, 4…
The get_lichess_leaderboard()
function takes in two parameters; how many players you want returned (with a max of 200 being returned) and the speed variant. Speed variants include;
"ultraBullet", "bullet", "blitz", "rapid", "classical", "chess960", "crazyhouse", "antichess", "atomic", "horde", "kingOfTheHill", "racingKings", "threeCheck"
lichess_leaders <- lichess_leaderboard(top_n_players = 10, speed_variant = "blitz") glimpse(lichess_leaders)
This section will detail some of the functions to use for extracting information from the raw games data extracts for analysis.
To be able to see how many moves a game lasted, the return_num_moves
function can be used.
It will parse through the Moves column in the extracted data frame and return a vector of moves, each one being for each game.
# function to extract the number of moves in each game chessdotcom_game_data_all_months$nMoves <- return_num_moves(moves_string = chessdotcom_game_data_all_months$Moves) # inspect output head(chessdotcom_game_data_all_months[, c("Moves", "nMoves")]) #> Moves #> 1 1. e4 {[%clk 0:02:52.8]} 1... e6 {[%clk 0:02:59.8]} 2. g3 {[%clk 0:02:49.2]} 2... b6 {[%clk 0:02:58.3]} 3. Nf3 {[%clk 0:02:47.5]} 3... Bb7 {[%clk 0:02:57.2]} 4. d3 {[%clk 0:02:42.3]} 4... Qf6 {[%clk 0:02:54.3]} 5. Na3 {[%clk 0:02:34.8]} 5... d5 {[%clk 0:02:52.4]} 6. Bg5 {[%clk 0:02:21.4]} 6... Qxb2 {[%clk 0:02:49.7]} 7. Rb1 {[%clk 0:02:18.7]} 7... Qxa3 {[%clk 0:02:48.2]} 8. Qc1 {[%clk 0:02:02.5]} 8... Qc3+ {[%clk 0:02:45.8]} 9. Qd2 {[%clk 0:01:46.2]} 9... Qa3 {[%clk 0:02:42.5]} 10. Bf4 {[%clk 0:01:39.9]} 10... Kd7 {[%clk 0:02:38.6]} 11. Qb4 {[%clk 0:01:27.2]} 11... Bxb4+ {[%clk 0:02:36.1]} 12. Ke2 {[%clk 0:01:14.6]} 12... Bc5 {[%clk 0:02:29]} 13. Ng5 {[%clk 0:01:08.9]} 13... Ke7 {[%clk 0:02:21.9]} 14. Bh3 {[%clk 0:01:00]} 14... Qxa2 {[%clk 0:02:19.3]} 15. Rb5 {[%clk 0:00:50.1]} 15... Qxc2+ {[%clk 0:02:16.1]} 16. Kf3 {[%clk 0:00:43.7]} 16... Qxf2+ {[%clk 0:02:13.7]} 17. Kg4 {[%clk 0:00:31]} 17... Qe2+ {[%clk 0:02:11.4]} 18. Kh4 {[%clk 0:00:27.3]} 18... Qxd3 {[%clk 0:02:07.9]} 19. Bf1 {[%clk 0:00:20]} 19... Qd4 {[%clk 0:01:55.1]} 20. Bxc7 {[%clk 0:00:13.2]} 20... Qf6 {[%clk 0:01:51.6]} 21. Rxc5 {[%clk 0:00:03.4]} 21... bxc5 {[%clk 0:01:49.3]} 0-1 #> 2 1. d4 {[%clk 0:02:59.9]} 1... b5 {[%clk 0:02:58.2]} 2. e3 {[%clk 0:02:58.5]} 2... e6 {[%clk 0:02:57]} 3. Nf3 {[%clk 0:02:57.5]} 3... Bb7 {[%clk 0:02:55.4]} 4. Be2 {[%clk 0:02:52.9]} 4... Nc6 {[%clk 0:02:54.7]} 5. c3 {[%clk 0:02:51.4]} 5... Bd6 {[%clk 0:02:50.2]} 6. b4 {[%clk 0:02:49.6]} 6... a5 {[%clk 0:02:46.2]} 7. a3 {[%clk 0:02:46]} 7... axb4 {[%clk 0:02:39.7]} 8. a4 {[%clk 0:02:43]} 8... bxa4 {[%clk 0:02:37.2]} 9. cxb4 {[%clk 0:02:40.3]} 9... Nxb4 {[%clk 0:02:32.9]} 10. Na3 {[%clk 0:02:30.6]} 10... Qf6 {[%clk 0:02:25.8]} 11. Rb1 {[%clk 0:02:21.1]} 11... Qf5 {[%clk 0:02:21.8]} 12. Rb2 {[%clk 0:02:05.4]} 12... Qb1 {[%clk 0:02:21.3]} 13. Nb5 {[%clk 0:01:55.6]} 13... Qe4 {[%clk 0:02:11.7]} 14. Nxc7+ {[%clk 0:01:52]} 14... Kd8 {[%clk 0:02:07]} 15. Nxa8 {[%clk 0:01:49.6]} 15... Bxa8 {[%clk 0:02:05.8]} 16. O-O {[%clk 0:01:47.2]} 16... Qg4 {[%clk 0:01:59.6]} 17. Re1 {[%clk 0:01:32.4]} 17... Nf6 {[%clk 0:01:53.6]} 18. Kf1 {[%clk 0:01:29.1]} 18... Nbd5 {[%clk 0:01:32]} 19. h3 {[%clk 0:01:14.1]} 19... Nc3 {[%clk 0:01:30.1]} 20. Qc2 {[%clk 0:01:04.6]} 20... Qe4 {[%clk 0:01:23.2]} 21. Qxc3 {[%clk 0:01:00]} 21... Nh5 {[%clk 0:01:12.8]} 22. Bd3 {[%clk 0:00:56.6]} 22... Qd5 {[%clk 0:00:55.7]} 23. Rb5 {[%clk 0:00:47.2]} 23... Qxb5 {[%clk 0:00:38.2]} 24. Bxb5 {[%clk 0:00:45]} 24... Nf6 {[%clk 0:00:28.7]} 25. Qa5+ {[%clk 0:00:42.6]} 25... Kc8 {[%clk 0:00:24.6]} 26. Qxa8+ {[%clk 0:00:39.4]} 26... Kc7 {[%clk 0:00:22.6]} 27. Qxh8 {[%clk 0:00:34.5]} 27... Bb4 {[%clk 0:00:00.2]} 28. Rd1 {[%clk 0:00:30]} 1-0 #> 3 1. e4 {[%clk 0:02:59.8]} 1... a6 {[%clk 0:02:58.5]} 2. c3 {[%clk 0:02:58.7]} 2... f6 {[%clk 0:02:55.7]} 3. Na3 {[%clk 0:02:57.5]} 3... h6 {[%clk 0:02:52.2]} 4. Qh5+ {[%clk 0:02:52]} 4... g6 {[%clk 0:02:43]} 5. Qxg6# {[%clk 0:02:50.4]} 1-0 #> 4 1. Nf3 {[%clk 0:02:59.9]} 1... d5 {[%clk 0:02:59.3]} 2. d4 {[%clk 0:02:58.7]} 2... f6 {[%clk 0:02:57.2]} 3. g4 {[%clk 0:02:55.3]} 3... Bxg4 {[%clk 0:02:53.4]} 4. Nh4 {[%clk 0:02:49]} 4... Nc6 {[%clk 0:02:51.2]} 5. f3 {[%clk 0:02:47.7]} 5... Be6 {[%clk 0:02:45.5]} 6. b3 {[%clk 0:02:41.1]} 6... Nh6 {[%clk 0:02:42.3]} 7. Rg1 {[%clk 0:02:36]} 7... b5 {[%clk 0:02:38.6]} 8. Nd2 {[%clk 0:02:33.3]} 8... Nxd4 {[%clk 0:02:35.9]} 9. c3 {[%clk 0:02:30.7]} 9... Ndf5 {[%clk 0:02:25.2]} 10. e4 {[%clk 0:02:29.3]} 10... Nxh4 {[%clk 0:02:23.1]} 11. exd5 {[%clk 0:02:27.4]} 11... Bxd5 {[%clk 0:02:20.7]} 12. f4 {[%clk 0:02:23.2]} 12... Bf3 {[%clk 0:02:15.9]} 13. Bxb5+ {[%clk 0:02:19.9]} 13... Kf7 {[%clk 0:02:05.1]} 14. Nxf3 {[%clk 0:02:18.3]} 14... Nxf3+ {[%clk 0:02:03]} 15. Qxf3 {[%clk 0:02:16.2]} 15... e6 {[%clk 0:01:54.8]} 16. h4 {[%clk 0:02:01.4]} 16... Qd5 {[%clk 0:01:49.1]} 17. c4 {[%clk 0:01:50.3]} 17... Qd8 {[%clk 0:01:25.6]} 18. f5 {[%clk 0:01:41.9]} 18... Nxf5 {[%clk 0:01:19.3]} 19. h5 {[%clk 0:01:33.8]} 19... h6 {[%clk 0:01:10.1]} 20. Qg2 {[%clk 0:01:18.6]} 20... Rc8 {[%clk 0:01:04.4]} 21. Qg6+ {[%clk 0:01:16.5]} 21... Ke7 {[%clk 0:00:54.1]} 22. Ba3+ {[%clk 0:01:15.2]} 22... Nd6 {[%clk 0:00:39.8]} 23. Kf2 {[%clk 0:00:58.5]} 23... c6 {[%clk 0:00:38.3]} 24. Rae1 {[%clk 0:00:56.9]} 24... Qb6+ {[%clk 0:00:36]} 25. Kg2 {[%clk 0:00:54.3]} 25... Kd8 {[%clk 0:00:20.7]} 26. Rxe6 {[%clk 0:00:43.4]} 26... Kd7 {[%clk 0:00:08.5]} 27. Rge1 {[%clk 0:00:37.5]} 27... Nxb5 {[%clk 0:00:03]} 28. Rd1+ {[%clk 0:00:32.3]} 28... Kc7 {[%clk 0:00:00.4]} 29. Qg3+ {[%clk 0:00:25]} 1-0 #> 5 1. e4 {[%clk 0:02:59.2]} 1... Nc6 {[%clk 0:02:59.1]} 2. g3 {[%clk 0:02:57.5]} 2... e6 {[%clk 0:02:54.1]} 3. b3 {[%clk 0:02:47.5]} 3... d6 {[%clk 0:02:53.1]} 4. Nc3 {[%clk 0:02:44.9]} 4... e5 {[%clk 0:02:52]} 5. Nf3 {[%clk 0:02:35.7]} 5... g6 {[%clk 0:02:46.9]} 6. Ba3 {[%clk 0:02:30.8]} 6... Bg4 {[%clk 0:02:42.2]} 7. Be2 {[%clk 0:02:25.6]} 7... h5 {[%clk 0:02:40.3]} 8. Ng5 {[%clk 0:02:20.7]} 8... Qxg5 {[%clk 0:02:33.9]} 9. h3 {[%clk 0:02:18.2]} 9... Be6 {[%clk 0:02:25.6]} 10. h4 {[%clk 0:02:15]} 10... Qf6 {[%clk 0:02:20.4]} 11. Bc4 {[%clk 0:02:00.7]} 11... g5 {[%clk 0:02:13.3]} 12. O-O {[%clk 0:01:58.1]} 12... gxh4 {[%clk 0:02:11.3]} 13. gxh4 {[%clk 0:01:55.4]} 13... Nge7 {[%clk 0:02:01.3]} 14. f4 {[%clk 0:01:38.9]} 14... Rg8+ {[%clk 0:01:59.4]} 15. Kf2 {[%clk 0:01:32.4]} 15... Bg4 {[%clk 0:01:49.6]} 16. Qe1 {[%clk 0:01:25.2]} 16... Qxf4+ {[%clk 0:01:45.8]} 17. Kg1 {[%clk 0:01:22.8]} 17... Bh3+ {[%clk 0:01:38]} 18. Kh1 {[%clk 0:01:07.3]} 18... Qg4 {[%clk 0:01:17.8]} 19. Rg1 {[%clk 0:01:02]} 19... Qf3+ {[%clk 0:01:14.2]} 20. Kh2 {[%clk 0:00:56.9]} 20... Qf4+ {[%clk 0:00:59]} 21. Kh1 {[%clk 0:00:51.9]} 21... Nd4 {[%clk 0:00:49.2]} 22. Rxg8 {[%clk 0:00:49.6]} 22... Nf3 {[%clk 0:00:44.6]} 23. Qf2 {[%clk 0:00:40.6]} 23... Nh2 {[%clk 0:00:08.5]} 24. Qxh2 {[%clk 0:00:34]} 24... Qf3+ {[%clk 0:00:04.7]} 25. Kg1 {[%clk 0:00:22.3]} 1-0 #> 6 1. e4 {[%clk 0:02:59.9]} 1... c5 {[%clk 0:02:57.8]} 2. Nf3 {[%clk 0:02:58.9]} 2... e6 {[%clk 0:02:56]} 3. g3 {[%clk 0:02:57.5]} 3... Qa5 {[%clk 0:02:50.9]} 4. Nc3 {[%clk 0:02:55.9]} 4... Bd6 {[%clk 0:02:38.1]} 5. d3 {[%clk 0:02:41.9]} 5... Nf6 {[%clk 0:02:33.9]} 6. Bd2 {[%clk 0:02:37.8]} 6... e5 {[%clk 0:02:27.5]} 7. Bg2 {[%clk 0:02:35.5]} 7... Qb6 {[%clk 0:02:15.8]} 8. O-O {[%clk 0:02:23.9]} 8... Ng4 {[%clk 0:02:10.8]} 9. Ng5 {[%clk 0:02:19.2]} 9... Qxb2 {[%clk 0:01:52.8]} 10. Qxg4 {[%clk 0:02:13.5]} 10... Qxc2 {[%clk 0:01:42.1]} 0-1 #> nMoves #> 1 21 #> 2 28 #> 3 5 #> 4 29 #> 5 25 #> 6 10
The chess.com data extract doesn't have how the game ended on its own. To get the game ending on its own, the get_game_ending
function can be used.
# function to extract the ending of chess.com data chessdotcom_game_data_all_months$Ending <- mapply(get_game_ending, termination_string = chessdotcom_game_data_all_months$Termination, white = chessdotcom_game_data_all_months$White, black = chessdotcom_game_data_all_months$Black) # inspect output head(chessdotcom_game_data_all_months[, c("Termination", "White", "Black", "Ending")]) #> Termination White Black Ending #> 1 hKotla won on time JaseZiv hKotla on time #> 2 Commander0101 won on time Commander0101 JaseZiv on time #> 3 JaseZiv won by checkmate JaseZiv oscarbazan by checkmate #> 4 oscarbazan won on time oscarbazan JaseZiv on time #> 5 JaseZiv won on time JaseZiv oscarbazan on time #> 6 JaseZiv won on time rojarosy JaseZiv on time
Given two players, one playing on white and the other on black, we want to be able to know the username of the winner. To get this information, use the get_winner
function.
# function to extract the winner of each game chessdotcom_game_data_all_months$Winner <- get_winner(result_column = chessdotcom_game_data_all_months$Result, white = chessdotcom_game_data_all_months$White, black = chessdotcom_game_data_all_months$Black) # inspect output head(chessdotcom_game_data_all_months[, c("White", "Black", "Result", "Winner")]) #> White Black Result Winner #> 1 JaseZiv hKotla 0-1 hKotla #> 2 Commander0101 JaseZiv 1-0 Commander0101 #> 3 JaseZiv oscarbazan 1-0 JaseZiv #> 4 oscarbazan JaseZiv 1-0 oscarbazan #> 5 JaseZiv oscarbazan 1-0 JaseZiv #> 6 rojarosy JaseZiv 0-1 JaseZiv
Extract the clock time and move times from a Lichess games list, using the lichess_clock_move_time
function.
# Get Lichess game data lichess_game_data <- get_raw_lichess("LordyLeroy", since = "2024-08-01") lichess_game_data_with_time <- lichess_clock_move_time(games_list = lichess_game_data) head(lichess_game_data_with_time) #> # A tibble: 6 × 7 #> Site White Black colour move_number clock_time move_time #> <chr> <chr> <chr> <chr> <dbl> <Duration> <Duration> #> 1 https://lichess.org/96PSCywU LordyLeroy chaplayy12 White 1 1200s (~20 minutes) 0s #> 2 https://lichess.org/96PSCywU LordyLeroy chaplayy12 Black 1 1200s (~20 minutes) 0s #> 3 https://lichess.org/96PSCywU LordyLeroy chaplayy12 White 2 1199s (~19.98 minutes) 1s #> 4 https://lichess.org/96PSCywU LordyLeroy chaplayy12 Black 2 1196s (~19.93 minutes) 4s #> 5 https://lichess.org/96PSCywU LordyLeroy chaplayy12 White 3 1189s (~19.82 minutes) 10s #> 6 https://lichess.org/96PSCywU LordyLeroy chaplayy12 Black 3 1194s (~19.9 minutes) 2s
For example, plot how move times tend to increase with increased move number in the opening with black, compared to white.
username <- "LordyLeroy" ggplot(lichess_game_data_with_time %>% filter((White == username & colour == "White") | (Black == username & colour == "Black"), between(move_number, 2, 9), move_time <= 100), aes(x = move_time, fill = as.factor(move_number))) + geom_density() + coord_flip() + labs(x = "Move time (seconds)", y = "Density", fill = "Move number", title = "Density of move time by colour (white or black)", subtitle = paste0("User: ", username)) + theme_minimal() + facet_wrap(~ colour)
This section will perform some exploratory data analysis on the data extracted by get_raw_chessdotcom()
, and then having used some of the analysis functions explained above. It is by no means an exhaustive list of topics to analyse, rather, it is designed to give the user a few ideas of what can be done with the analysis data provided.
chessdotcom_game_data_all_months %>% count(TimeClass) %>% ggplot(aes(x= reorder(TimeClass,n), y= n)) + geom_col(fill = "steelblue", colour = "grey40", alpha = 0.7) + labs(x= "Game Style", y= "Number of Games") + ggtitle("WHICH TIME CLASSES ARE PLAYED MOST BY USER") + coord_flip() + theme_minimal() + theme(panel.grid.major.y = element_blank())
chessdotcom_game_data_all_months %>% mutate(MonthEnd = paste(year(EndDate), str_pad(lubridate::month(ymd(EndDate)), 2, side = "left", pad = "0"), sep = "-")) %>% mutate(UserResult = ifelse(Winner == Username, "Win", ifelse(Winner == "Draw", "Draw", "Loss"))) %>% group_by(MonthEnd, UserResult) %>% summarise(n = n()) %>% mutate(WinPercentage = n / sum(n)) %>% filter(UserResult == "Win") %>% ggplot(aes(x= MonthEnd, y= WinPercentage, group=1)) + geom_line(colour= "steelblue", size=1) + geom_hline(yintercept = 0.5, linetype = 2, colour = "grey40") + scale_y_continuous(limits = c(0,1)) + labs(x= "Month Game Ended", y= "Win %") + ggtitle("MONTHLY WINNING %") + theme_minimal()
chessdotcom_game_data_all_months %>% filter(TimeClass %in% c("blitz", "daily")) %>% mutate(UserELO = as.numeric(ifelse(Username == White, WhiteElo, BlackElo))) %>% mutate(MonthEnd = paste(year(EndDate), str_pad(lubridate::month(ymd(EndDate)), 2, side = "left", pad = "0"), sep = "-")) %>% group_by(MonthEnd, TimeClass) %>% summarise(AverageELO = mean(UserELO, na.rm = T)) %>% ggplot(aes(x= MonthEnd, y= AverageELO, group=1)) + geom_line(colour= "steelblue", size=1) + labs(x= "Month Game Ended", y= "Average ELO") + ggtitle("MONTHLY AVERAGE ELO RATING") + facet_wrap(~ TimeClass, scales = "free_y", ncol = 1) + theme_minimal()
chessdotcom_game_data_all_months %>% mutate(OpponentELO = as.numeric(ifelse(Username == White, BlackElo, WhiteElo)), UserResult = ifelse(Winner == Username, "Win", ifelse(Winner == "Draw", "Draw", "Loss"))) %>% filter(TimeClass %in% c("blitz", "daily")) %>% ggplot(aes(x= OpponentELO, fill = UserResult)) + geom_density(alpha = 0.3) + ggtitle("HOW DO WE FARE AGAINST DIFFERENT ELOs?") + facet_wrap(~ TimeClass, scales = "free", ncol = 1) + theme_minimal()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.