wage1 | R Documentation |
Cross-section wage data consisting of a random sample taken from the U.S. Current Population Survey for the year 1976. There are 526 observations in total.
data("wage1")
A data frame with 24 columns, and 526 rows.
column 1, of type numeric
, average hourly earnings
column 2, of type numeric
, years of education
column 3, of type numeric
, years potential experience
column 4, of type numeric
, years with current employer
column 5, of type factor
, =“Nonwhite” if nonwhite, “White” otherwise
column 6, of type factor
, =“Female” if female, “Male” otherwise
column 7, of type factor
, =“Married” if Married, “Nonmarried” otherwise
column 8, of type numeric
, number of dependents
column 9, of type numeric
, =1 if live in SMSA
column 10, of type numeric
, =1 if live in north central U.S
column 11, of type numeric
, =1 if live in southern region
column 12, of type numeric
, =1 if live in western region
column 13, of type numeric
, =1 if work in construc. indus.
column 14, of type numeric
, =1 if in nondur. manuf. indus.
column 15, of type numeric
, =1 if in trans, commun, pub ut
column 16, of type numeric
, =1 if in wholesale or retail
column 17, of type numeric
, =1 if in services indus.
column 18, of type numeric
, =1 if in prof. serv. indus.
column 19, of type numeric
, =1 if in profess. occupation
column 20, of type numeric
, =1 if in clerical occupation
column 21, of type numeric
, =1 if in service occupation
column 22, of type numeric
, log(wage)
column 23, of type numeric
, exper^2
column 24, of type numeric
, tenure^2
Jeffrey M. Wooldridge
Wooldridge, J.M. (2000), Introductory Econometrics: A Modern Approach, South-Western College Publishing.
## Not run:
data(wage1)
## Cross-validated model selection for spline degree and bandwidths Note
## - we override the default nmulti here to get a quick illustration
## (we don't advise doing this, in fact advise using more restarts in
## serious applications)
model <- crs(lwage~married+
female+
nonwhite+
educ+
exper+
tenure,
basis="additive",
complexity="degree",
data=wage1,
segments=c(1,1,1),
nmulti=1)
summary(model)
## Residual plots
plot(model)
## Partial mean plots (control for non axis predictors)
plot(model,mean=TRUE)
## Partial first derivative plots (control for non axis predictors)
plot(model,deriv=1)
## Partial second derivative plots (control for non axis predictors)
plot(model,deriv=2)
## Compare with local linear kernel regression
require(np)
model <- npreg(lwage~married+
female+
nonwhite+
educ+
exper+
tenure,
regtype="ll",
bwmethod="cv.aic",
data=wage1)
summary(model)
## Partial mean plots (control for non axis predictors)
plot(model,common.scale=FALSE)
## Partial first derivative plots (control for non axis predictors)
plot(model,gradients=TRUE,common.scale=FALSE)
detach("package:np")
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.