npiv_choose_J | R Documentation |
npiv_choose_J
implements the data-driven choice of sieve dimension developed in Chen, Christensen, and Kankanala (2024) for nonparametric instrumental variables estimation using a B-spline sieve. It applies to nonparametric regression as a special case.
npiv_choose_J(Y,
X,
W,
X.grid = NULL,
J.x.degree = 3,
K.w.degree = 4,
K.w.smooth = 2,
knots = c("uniform", "quantiles"),
basis = c("tensor", "additive", "glp"),
X.min = NULL,
X.max = NULL,
W.min = NULL,
W.max = NULL,
grid.num = 50,
boot.num = 99,
check.is.fullrank = FALSE,
progress = TRUE)
Y |
dependent variable vector. |
X |
matrix of endogenous regressors. |
W |
matrix of instrumental variables. Set |
X.grid |
vector of grid point(s). Default uses 50 equally spaced points over the support of each |
J.x.degree |
B-spline degree (integer or vector of integers of length |
K.w.degree |
B-spline degree (integer or vector of integers of lenth |
K.w.smooth |
non-negative integer. Basis for the nonparametric first-stage uses |
knots |
knots type, a character string. Options are:
|
basis |
basis type (if
|
X.min |
lower bound on the support of each |
X.max |
upper bound on the support of each |
W.min |
lower bound on the support of each |
W.max |
upper bound on the support of each |
grid.num |
number of grid points for each |
boot.num |
number of bootstrap replications. |
check.is.fullrank |
check that |
progress |
whether to display progress bar or not. Default is |
J.hat.max |
largest element of candidate set of sieve dimensions searched over. |
J.hat.n |
second largest element of candidate set of sieve dimensions searched over. |
J.hat |
bootstrap-based Lepski choice of sieve dimension. |
J.tilde |
data-driven choice of sieve dimension using the method of Chen, Christensen, and Kankanala (2024). Minimum of |
J.x.seg |
data-driven number of segments for |
K.w.seg |
data-driven number of segments for |
theta.star |
Lepski critical value used in determination of |
Jeffrey S. Racine <racinej@mcmaster.ca>, Timothy Christensen <timothy.christensen@yale.edu>
Chen, X., T. Christensen and S. Kankanala (2024). “Adaptive Estimation and Uniform Confidence Bands for Nonparametric Structural Functions and Elasticities.” Review of Economic Studies, forthcoming. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1093/restud/rdae025")}
npiv
library(MASS)
## Simulate the data
n <- 10000
cov.ux <- 0.5
var.u <- 0.1
mu <- c(1,1,0)
Sigma <- matrix(c(1.0,0.85,cov.ux,
0.85,1.0,0.0,
cov.ux,0.0,1.0),
3,3,
byrow=TRUE)
foo <- mvrnorm(n = n,
mu,
Sigma)
X <- 2*pnorm(foo[,1],mean=mu[1],sd=sqrt(Sigma[1,1])) -1
W <- 2*pnorm(foo[,2],mean=mu[2],sd=sqrt(Sigma[2,2])) -1
U <- foo[,3]
## Cosine structural function
h0 <- sin(pi*X)
Y <- h0 + sqrt(var.u)*U
npiv_choose_J(Y,X,W)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.