knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>",
  fig.path = "man/figures/README-",
  out.width = "100%"
)

stochvolTMB

CRAN_Status_Badge CRAN RStudio mirror downloads R buildstatus License: GPLv3 Lifecycle:experimental DOI

stochvolTMB is a package for fitting stochastic volatility (SV) models to time series data. It is inspired by the package stochvol, but parameter estimates are obtained through optimization and not MCMC, leading to significant speed up. It is built on Template Model Builder for fast and efficient estimation. The latent volatility is integrated out of the likelihood using the Laplace approximation and automatic differentiation (AD) is used for accurate evaluation of derivatives.

Four distributions for the observational error are implemented:

Installation

To install the current stable release from CRAN, use

install.packages("stochvolTMB")

To install the current development version, use

``` {r eval = FALSE}

install.packages("remotes")

remotes::install_github("JensWahl/stochvolTMB")

If you would also like to build and view the vignette locally, use

```r
remotes::install_github("JensWahl/stochvolTMB", dependencies = TRUE, build_vignettes = TRUE)

Example

The main function for estimating parameters is estimate_parameters:

library(stochvolTMB, warn.conflicts = FALSE)

# load s&p500 data from 2005 to 2018
data(spy)

# find the best model using AIC 
gaussian <- estimate_parameters(spy$log_return, model = "gaussian", silent = TRUE)
t_dist <- estimate_parameters(spy$log_return, model = "t", silent = TRUE)
skew_gaussian <- estimate_parameters(spy$log_return, model = "skew_gaussian", silent = TRUE)
leverage <- estimate_parameters(spy$log_return, model = "leverage", silent = TRUE)

# the leverage model stands out with an AIC far below the other models
AIC(gaussian, t_dist, skew_gaussian, leverage)

# get parameter estimates with standard error
estimates <- summary(leverage)
head(estimates, 10)

# plot estimated volatility with 95 % confidence interval
plot(leverage, include_ci = TRUE, dates = spy$date)

Given the estimated parameters we can simulate future volatility and log-returns using predict.

set.seed(123)
# simulate future prices with or without parameter uncertainty
pred = predict(leverage, steps = 10)

# Calculate the mean, 2.5% and 97.5% quantiles from the simulations
pred_summary = summary(pred, quantiles = c(0.025, 0.975), predict_mean = TRUE)

print(pred_summary)

# plot predicted volatility with 0.025 and 0.975 quantiles
plot(leverage, include_ci = TRUE, forecast = 50, dates = spy$d) +
  ggplot2::xlim(c(spy[.N, date] - 150, spy[.N, date] + 50))

Shiny app

By running demo() you start a shiny application where you can visually inspect the effect of choosing different models and parameter configurations

demo()



JensWahl/stochvolTMB documentation built on Feb. 5, 2025, 9:28 p.m.