bess_svm: Best subset selection on svm.

Description Usage Arguments Value Examples

View source: R/bess_svm.R

Description

Choice the best feature subset in svm model.

Usage

1
bess_svm(X, y, T0, alpha = 0.01, tau = 0.05, max.steps = 100)

Arguments

X

Data Matrix

y

True label

T0

Fixed nonzero feature number

alpha

Penalty coefficient in svm of L2

tau

Default param of smooth hinge loss.

max.steps

max iteration step

Value

sparse coefficient

Examples

1
2
3
4
5
## Not run: 
data <- gendata(1000,100,5)
bess_svm(data$x, data$y, 5)

## End(Not run)

JiangshuoZhao/StatComp21065 documentation built on Dec. 23, 2021, 10:16 p.m.