Description Usage Arguments Value Examples
Choice the best feature subset in svm model.
1 | bess_svm(X, y, T0, alpha = 0.01, tau = 0.05, max.steps = 100)
|
X |
Data Matrix |
y |
True label |
T0 |
Fixed nonzero feature number |
alpha |
Penalty coefficient in svm of L2 |
tau |
Default param of smooth hinge loss. |
max.steps |
max iteration step |
sparse coefficient
1 2 3 4 5 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.