| complete_log_posterior | Compute a value proportional to the expected complete log... |
| compute_H | Compute all the blocks of H. |
| compute_H_W | Compute all the w_i blocks of H |
| cov.independent | Independant covariance function. Is zero everywhere except... |
| cov.independent.d | Derivative of the independent covariance function. Does not... |
| cov.MR | Noisy MR |
| cov.MR.beta0 | Computationally cheap estimate for beta0 for cov.MR |
| cov.MR.d | Partial derivatives of the MR |
| cov.noisy.MR | Noisy MR covariance function |
| cov.noisy.MR.d | Partial derivatives of the noisy MR covariance function |
| cov.noisy.RQ | Noisy RQ covariance function |
| cov.noisy.RQ.beta0 | Computationally cheap estimate for beta0 for cov.noisy.RQ. |
| cov.noisy.RQ.d | Partial derivatives of the noisy RQ covariance function |
| cov.noisy.SE | Noisy SE covariance function |
| cov.noisy.SE.beta0 | Computationally cheap estimate for beta0 for cov.noisy.SE. |
| cov.noisy.SE.d | Partial derivatives of the noisy SE covariance function |
| cov.RQ | Rational quadratic covariance function |
| cov.RQ.beta0 | Computationally cheap estimate for beta0 for cov.RQ. |
| cov.RQ.d | Rational quadratic covariance function derivatives wrt... |
| cov.SE | Squared exponential covariance function. |
| cov.SE.beta0 | Computationally cheap estimate for beta0 for cov.SE. |
| cov.SE.d | Squared exponential covariance function derivatives wrt... |
| cov.taper | Taper a covariance function |
| cov.taper.d | Taper a covariance function (partial derivatives) |
| dlaplace | Density of the Laplace distribution |
| EM.E | Expectation step |
| EM.M.sigSq | Maximization step for sigma^2 |
| EM.M.W | Maximization step for W |
| initialize_from_ppca | Initialize mu, sigSq and W from PPCA. |
| log_det_H_d | Compute the partial derivatives of log(det(H)) with respect... |
| log_evidence | Compute the laplace approximation to the log evidence given... |
| log_evidence_d | Compute the derivative of the approximate log evidence with... |
| log_likelihood | Calculate the log likelihood for StPCA with given parameters |
| log_prior | Calculate the *un-normalised* log prior (only in sigSq) for... |
| log_prior_d | Compute the partial derivatives of the log prior with respect... |
| log_prior_sigSq | The improper prior over sigSq. Proportional to sigma^-2 |
| log_prior_W | The proper prior over W. p(W) = \prod^k_i=1 N(w_i | 0, K) |
| log_sparse_prior | The *un-normalised* prior over W, sigma^2 in SpStPCA. A... |
| log_sparse_prior_W | The *un-normalised* prior over W in SpStPCA. This is a... |
| soft_threshold | Soft-thresholding operator. |
| StpcaModel-class | Structured PCA Model |
| sylSolve | Solve the sylvester equation AW + WB = C for W. |
| synthesize_data | Synthesize fake data from StPCA model |
| synthesize_data_kern | Synthesize fake data from StPCA model |
| theta_EM | Update theta to be the maximum-a-posteriori value using... |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.