README.md

eas

Overview

Package eas for Einstein Aging Study

The EAS is a longitudinal study of community-residing individuals, aged 70 and older, in the Bronx, New York, a racially and ethnically diverse urban setting. In May 2017, the EAS added the neuropsychological battery of the Uniform Data Set (UDSNB 3.0) to the in-person assessment battery. Below is the list of UDSNB 3.0 tests, the corresponding variables and item numbers on the UDSNB 3.0 form. Click here for the UDSNB3.0 form.

Current package provides a tool to calculate demographically adjusted z-scores and impairment indicators for UDS3 neuropsychological tests. You can specify if you want to use the norms from Einstein Aging Study(EAS) or National Alzheimer’s Coordinating Center(NACC).

obtained from 225 cognitively normal older adults in EAS, use ?norms_coef_eas for the documentation.

obtaied from comparable data of 5,031 participants in the NACC database, use ?norms_coef_nacc for the documentation.

Installation

install.packages("devtools")
devtools::install_github("JiyueQin/eas")

Usage

library(eas)
library(tidyverse)
# here is a sample hypothetical dataset used to calculate z-scores. You should prepare your dataset in this standard format.
head(sample_dat)
## # A tibble: 6 x 21
##   female   age educyrs black_race mocascore verbatimi paraphrasei verbatimd
##    <dbl> <dbl>   <dbl>      <dbl>     <dbl>     <dbl>       <dbl>     <dbl>
## 1      1  74.4      19          0        18        21          17        26
## 2      0  82.2      18          0        17        12          19        29
## 3      1  84.2      16          0        25        21          22        16
## 4      1  84.3      14          1        26        28          20        12
## 5      0  76.5      20          0        17        16          23         9
##   paraphrased bensonscorei bensonscored numspancorf numspancorb minttotal
##         <dbl>        <dbl>        <dbl>       <dbl>       <dbl>     <dbl>
## 1          15           15           11          10           8        29
## 2          10           16           10           4           5        28
## 3          15           13            9           9           6        27
## 4          14           16           11           9           7        28
## 5          15           13           10          13           8        28
##   fwords60sec lwords60sec flword animals60sec vegetables60sec tr_a1 tr_b1
##         <dbl>       <dbl>  <dbl>        <dbl>           <dbl> <dbl> <dbl>
## 1          12          18     29           28               7    39   105
## 2          14          11     42           19              14    58    69
## 3          12           9     30           10              20    37    51
## 4           9          19     11           16              13    43    77
## 5          15           7     29           22               4    33   139
## # ... with 1 more row
str(sample_dat)
## tibble[,21] [20 x 21] (S3: tbl_df/tbl/data.frame)
##  $ female         : num [1:20] 1 0 1 1 0 1 1 1 0 1 ...
##  $ age            : num [1:20] 74.4 82.2 84.2 84.3 76.5 ...
##  $ educyrs        : num [1:20] 19 18 16 14 20 6 19 15 12 18 ...
##  $ black_race     : num [1:20] 0 0 0 1 0 1 0 0 1 0 ...
##  $ mocascore      : num [1:20] 18 17 25 26 17 25 27 26 25 23 ...
##  $ verbatimi      : num [1:20] 21 12 21 28 16 19 29 17 18 19 ...
##  $ paraphrasei    : num [1:20] 17 19 22 20 23 22 16 18 12 9 ...
##  $ verbatimd      : num [1:20] 26 29 16 12 9 21 17 16 3 19 ...
##  $ paraphrased    : num [1:20] 15 10 15 14 15 4 19 10 21 17 ...
##  $ bensonscorei   : num [1:20] 15 16 13 16 13 14 16 14 15 14 ...
##  $ bensonscored   : num [1:20] 11 10 9 11 10 8 8 10 9 12 ...
##  $ numspancorf    : num [1:20] 10 4 9 9 13 7 7 11 8 5 ...
##  $ numspancorb    : num [1:20] 8 5 6 7 8 8 7 3 10 6 ...
##  $ minttotal      : num [1:20] 29 28 27 28 28 25 32 32 32 28 ...
##  $ fwords60sec    : num [1:20] 12 14 12 9 15 12 17 11 10 14 ...
##  $ lwords60sec    : num [1:20] 18 11 9 19 7 14 14 12 13 13 ...
##  $ flword         : num [1:20] 29 42 30 11 29 20 27 27 36 25 ...
##  $ animals60sec   : num [1:20] 28 19 10 16 22 6 14 17 13 25 ...
##  $ vegetables60sec: num [1:20] 7 14 20 13 4 12 9 12 5 10 ...
##  $ tr_a1          : num [1:20] 39 58 37 43 33 44 51 28 51 49 ...
##  $ tr_b1          : num [1:20] 105 69 51 77 139 184 61 63 141 86 ...
# only include three test variables for easier display
sample_dat_small = sample_dat %>% select(female:black_race, minttotal, tr_a1, tr_b1)

# calculate z-scores and the impairment indicators for tr_a1 and tr_b1 with NACC norms and 1.5 SD to define impairment.
uds_z(sample_dat_small, c('tr_a1','tr_b1'), norms = 'nacc', impair_sd = 1.5)
## # A tibble: 20 x 11
##   female   age educyrs black_race minttotal tr_a1 tr_b1 z_tr_a1
##    <dbl> <dbl>   <dbl>      <dbl>     <dbl> <dbl> <dbl>   <dbl>
## 1      1  74.4      19          0        29    39   105 -0.796 
## 2      0  82.2      18          0        28    58    69 -1.75  
## 3      1  84.2      16          0        27    37    51 -0.0257
## 4      1  84.3      14          1        28    43    77  0.431 
## 5      0  76.5      20          0        28    33   139 -0.212 
##   impair_1.5sd_tr_a1 z_tr_b1 impair_1.5sd_tr_b1
##                <dbl>   <dbl>              <dbl>
## 1                  0  -0.786                  0
## 2                  1   0.511                  0
## 3                  0   1.09                   0
## 4                  0   1.61                   0
## 5                  0  -1.45                   0
## # ... with 15 more rows
# calculate the z-score and the impaiment indicator for minttotal with EAS norms and 1SD to define impairment
# Also output mean and sd estimates in addition to the z-scores and the impairment indicators.
uds_z(sample_dat_small, 'minttotal', norms = 'eas', impair_sd = 1, out_mean_sd  = T)
## # A tibble: 20 x 11
##   female   age educyrs black_race minttotal tr_a1 tr_b1 sd_minttotal
##    <dbl> <dbl>   <dbl>      <dbl>     <dbl> <dbl> <dbl>        <dbl>
## 1      1  74.4      19          0        29    39   105         3.90
## 2      0  82.2      18          0        28    58    69         3.90
## 3      1  84.2      16          0        27    37    51         3.90
## 4      1  84.3      14          1        28    43    77         3.90
## 5      0  76.5      20          0        28    33   139         3.90
##   mean_minttotal z_minttotal impair_1sd_minttotal
##            <dbl>       <dbl>                <dbl>
## 1           29.7     -0.172                     0
## 2           28.2     -0.0473                    0
## 3           27.8     -0.199                     0
## 4           26.0      0.524                     0
## 5           29.4     -0.350                     0
## # ... with 15 more rows


JiyueQin/eas documentation built on April 4, 2022, 1:51 a.m.