#' @title Continuous Life Insurance
#' @description Calculates the present value of a continuous life insurance.
#' @param x An integer. The age of the insuree.
#' @param h An integer. The deferral period.
#' @param n An integer. Number of years of coverage.
#' @param i The interest rate. A numeric type value.
#' @param data A data.frame of the mortality table, with the first column being the age and the second one the probability of death.
#' @param prop A numeric value. It represents the proportion of the mortality table being used (between 0 and 1).
#' @param assumption A character string. The assumption used for fractional ages ("UDD" for uniform distribution of deaths and "constant" for constant force of mortality).
#' @param cap A numeric type value. The value of the payment.
#' @export
#' @keywords Continuous Life Insurance
#' @return Returns a numeric (actuarial present value).
#' @references Chapter 3 of Life Contingencies (1952) by Jordan, chapter 4 of Actuarial Mathematics (1997) by Bowers, Gerber, Hickman, Jones & Nesbitt.
#' @examples
#' ACont.(24,2,10,0.04,CSO80MANB,1,"UDD",1)
#' ACont.(24,2,10,0.04,CSO80MANB,1,"constant",1)
#'
ACont.<-function(x,h,n,i=0.04,data,prop=1,assumption="UDD",cap=1){
dig<-getOption("digits")
on.exit(options(digits = dig))
options(digits = 15)
if(x>=0 && is_integer(x)==1 && h>=0 && is_integer(h)==1 && n>=0 && is_integer(n)==1 && i>=0 && prop>0){
if(n==0){
Axhnc<-0
return(Axhnc)
}else{
delta<-log(1+i)
if(assumption=="constant"){
Axhnc<-E(x,h,i,data,prop)-E(x,h+n,i,data,prop,"none",1)-delta*aCont(x,h,n,i,data,prop,"constant",1)
}else if(assumption=="UDD"){
Axhnc<-(i/delta)*A.(x,h,n,1,i,data,prop,"none",1)
}else{
stop("Check assumption")
}
}
Axhnc<-as.numeric(Axhnc)
px1<-Axhnc*cap
return(px1)
}else{
stop("Check Values")
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.