#' @title Pure Endowment
#' @description Calculates the Pure endowments.
#' @param x An integer. The age of the insuree.
#' @param n The term of the endowment. An integer, for annual coverage, or a numeric for fractional coverage.
#' @param i The interest rate. A numeric type value.
#' @param data A data.frame containing the mortality table, with the first column being the age and the second one, the probability of death.
#' @param prop A numeric value. It represents the proportion of the mortality table being used (between 0 and 1).
#' @param assumption A character string. The assumption used for fractional ages ("UDD" for uniform distribution of deaths, "constant" for constant force of mortality and "none" if there is no fractional coverage).
#' @param cap A numeric type value. The payment.
#' @references Chapter 2 of Life Contingencies (1952) by Jordan.
#' @export
#' @keywords Pure Endowment
#' @return NULL
#' @examples
#' E(45,10,0.04,CSO80MANB,1,"none",1000)
#' E(24,1.6,0.04,CSO80MANB,1,"constant",17000)
#' E(26,2.4,0.04,CSO58FALB,1,"UDD",3500)
#'
E<-function(x,n,i=0.04,data,prop=1,assumption="none",cap=1){
dig<-getOption("digits")
on.exit(options(digits = dig))
options(digits = 15)
if(x>=0 && is_integer(x)==1 && n>=0 && i>=0 && prop>0 && cap>0){
if(n==0){
Exn<-1
} else if(is_integer(n)==1){
Exn<-(1/(1+i))^(n)*Survival(x,n,data,prop)
if(is.na(Exn)==1){
Exn<-0
}
} else {
if(assumption=="constant"){
t<-floor(n)
sk<-n-t
Exn<-E(x,t,i,data,prop,"none",1)-sk*(E(x,t,i,data,prop,"none",1)-E(x,t+1,i,data,prop,"none",1))
if(is.na(Exn)==1){
Exn<-0
}
}else{
if(assumption=="UDD"){
if((x+n)==(nrow(data)-1)){
prop<-1
}
t<-floor(n)
sk<-n-t
prob<-1-sk*data[x+n+1,2]*prop
Exn<-(1/(1+i))^(n)*(Survival(x,t,data,prop)*prob)
if(is.na(Exn)==1){
Exn<-0
}
}else{
stop("Check assumption")
}
}
}
Exn<-as.numeric(Exn)
px1<-Exn*cap
return(px1)
} else{
stop("Check values")
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.