The goal of jofou.lib
is to regroup all the functions that are useful
for me to work efficiently.
You can install the lastest version of jofou.lib with:
devtools::install_github("jofou/jofou.lib")
This are basics examples which shows you how use the my_inspect group function:
library(tidyverse)
library(jofou.lib)
iris %>%
my_inspect_cat()
Resume et comparaison des variables categoriques
Nom de la variable
Nombre
Commun
pourcentage
Species
3
setosa
33
library(tidyverse)
library(jofou.lib)
iris %>%
my_inspect_cor()
Coeficient de correlation pour toutes les variables numeriques
Variable 1
Variable 2
Correlation
Valeur P
N-NA (%)
Petal.Width
Petal.Length
0.96
0.000
100
Petal.Length
Sepal.Length
0.87
0.000
100
Petal.Width
Sepal.Length
0.82
0.000
100
Petal.Length
Sepal.Width
-0.43
0.000
100
Petal.Width
Sepal.Width
-0.37
0.000
100
Sepal.Width
Sepal.Length
-0.12
0.154
100
library(tidyverse)
library(jofou.lib)
iris %>%
my_inspect_imb()
Resume des categories les plus utilisees
Nom de la variable
Categorie
Pourcentage
Nombre
Species
setosa
33
50
library(tidyverse)
library(jofou.lib)
iris %>%
my_inspect_na()
Nombre de valeur manquante pour chaque variable
Nom de la variable
NA
Pourcentage
Sepal.Length
0
0
Sepal.Width
0
0
Petal.Length
0
0
Petal.Width
0
0
Species
0
0
library(tidyverse)
library(jofou.lib)
iris %>%
my_inspect_num()
Resume et comparaison des variables numeriques
Nom de la variable
min
q1
median
moyenne
q3
max
sd
NA (%)
Sepal.Length
4
5
6
6
6
8
1
0
Sepal.Width
2
3
3
3
3
4
0
0
Petal.Length
1
2
4
4
5
7
2
0
Petal.Width
0
0
1
1
2
2
1
0
library(tidyverse)
library(jofou.lib)
iris %>%
my_inspect_types()
Types de variables disponibles
Type
Nombre
Pourcentage
Nom des variables
numeric
4
80
Sepal.Length, Sepal.Width , Petal.Length, Petal.Width
factor
1
20
Species
I also have a couples of other functions to show distributions of numeric and categorical variables:
library(tidyverse)
library(jofou.lib)
iris %>%
my_num_dist()
library(tidyverse)
library(jofou.lib)
iris %>%
my_corr_num_graph()
#> NULL
library(tidyverse)
library(jofou.lib)
iris %>%
my_cat_dist()
These are basic examples that show you how to use my utilities functions:
library(tidyverse)
library(jofou.lib)
iris %>%
mutate(cat_Sepal.Length=round(Sepal.Length, digits = 0)) %>%
group_by(cat_Sepal.Length) %>%
summarise(mode_species=calculate_mode(Species))
#> # A tibble: 5 x 2
#> cat_Sepal.Length mode_species
#> * <dbl> <fct>
#> 1 4 setosa
#> 2 5 setosa
#> 3 6 versicolor
#> 4 7 virginica
#> 5 8 virginica
library(tidyverse)
library(jofou.lib)
iris %>%
filter(Species %ni% "setosa") %>%
group_by(Species) %>%
summarise(nb=dplyr::n())
#> # A tibble: 2 x 2
#> Species nb
#> * <fct> <int>
#> 1 versicolor 50
#> 2 virginica 50
These are basic examples that show you how to use my machine learning utilities functions:
library(tidyverse)
library(lubridate)
library(timetk)
library(parsnip)
library(rsample)
library(modeltime)
# Data
data_prepared_tbl <- m4_monthly %>% filter(id == "M750")
# Split Data 80/20
splits <- initial_time_split(data_prepared_tbl, prop = 0.9)
# Model: auto_arima
model_fit_arima <- arima_reg() %>%
set_engine(engine = "auto_arima") %>%
fit(value ~ date, data = training(splits))
# Calibrate and plot
calibrate_and_plot(model_fit_arima, type="testing")
#> # A tibble: 1 x 9
#> .model_id .model_desc .type mae mape mase smape rmse rsq
#> <int> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 ARIMA(0,1,1)(0,1,1)[12] Test 151. 1.41 0.516 1.43 198. 0.930
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.