Description Usage Arguments Details Value Author(s)
Compute the negative of the logarithm of the likelihood
function for a set of observations y from the reparametrized
COM-Poisson model given the μ and ν parameters (see
Details).
| 1 2 3 | llcmp_fixed(beta, gama, X, Z, y)
llcmp(params, X, Z, y)
 | 
| beta | A vector of β parameter. | 
| gama | A vector of γ parameter. | 
| X | Design matrix related to the (approximate) mean parameter μ = \exp(X β). | 
| Z | Design matrix related to the dispersion parameter ν = \exp(Z γ). | 
| y | Vector of observed count data. | 
| params | A vector of the model parameters  | 
The log-likelihood function is given by
\ell(β,ν) = ∑ y \logλ - ν\log y! - \log[Z(λ,ν)],
where
\logλ = ν \log≤ft(μ - \frac{ν-1}{2ν}\right),
 and \log[Z(λ, ν)] is a
normalizing constant computed in log space to avoid numerical
issues (see compute_logz).
The computed log-likelihood function.
Eduardo Jr <edujrrib@gmail.com>
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.