Description Usage Arguments Details Value Author(s)
Compute the negative of the logarithm of the likelihood
function for a set of observations y
from the reparametrized
COM-Poisson model given the μ and ν parameters (see
Details).
1 2 3 | llcmp_fixed(beta, gama, X, Z, y)
llcmp(params, X, Z, y)
|
beta |
A vector of β parameter. |
gama |
A vector of γ parameter. |
X |
Design matrix related to the (approximate) mean parameter μ = \exp(X β). |
Z |
Design matrix related to the dispersion parameter ν = \exp(Z γ). |
y |
Vector of observed count data. |
params |
A vector of the model parameters |
The log-likelihood function is given by
\ell(β,ν) = ∑ y \logλ - ν\log y! - \log[Z(λ,ν)],
where
\logλ = ν \log≤ft(μ - \frac{ν-1}{2ν}\right),
and \log[Z(λ, ν)] is a
normalizing constant computed in log space to avoid numerical
issues (see compute_logz
).
The computed log-likelihood function.
Eduardo Jr <edujrrib@gmail.com>
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.