SPMix | R Documentation |
SPMix
returns localFDR estimates and semiparametric
mixture density estimates for given multi-dimensional lists of z-values, p-values or raw data.
For the hypothesis testing SPMix
uses a two-component semiparametric
mixture model to estimate the localFDR from the z-values. The two pillars of the
proposed approach are Efron's empirical null principle and log-concave density
estimation for the alternative distribution.
SPMix(
z,
tol = 5e-06,
p_value = FALSE,
alternative = "greater",
min_iter = 3,
max_iter = 30,
thre_z = 1 - 1e-05,
Uthre_gam = 0.99,
Lthre_gam = 0.01
)
z |
Matrix which each row indicates each data point (z-values, p-values, or raw data). |
tol |
Stopping criteria for the EM algorithm. If maximum absolute difference
of current and previous gamma value is smaller than tol,
i.e. |
p_value |
If TRUE, input data indicates p-values, if FALSE, it indicates z-values or raw data. (default: FALSE) |
alternative |
A character string specifying the alternative hypothesis, must be one of "greater" (default) or "less". You can also use the initial letter "g" or "l". (default: "greater") |
min_iter |
Minimum number of iterations in the EM algorithm. (default: 3) |
max_iter |
Maximum number of iterations in the EM algorithm. (default: 30) |
thre_z |
The upper threshold of gamma whose z-values are used in log-concave estimates in the M-step of the EM-type algorithm. (default: 1-1e-5) |
Uthre_gam |
The upper threshold of gamma which are used to compute stopping criteria for the EM algorithm. (default: 0.99) |
Lthre_gam |
The lower threshold of gamma which are used to compute stopping criteria for the EM algorithm. (default: 0.01) |
Estimates of semiparametric mixture model for given data.
z |
Matrix which each row indicates each data point |
p0 |
Prior probability for null distribution |
mu0 sig0 |
Parameter estimates of Gaussian (null) distribution, N(mu0, sig0^2) |
f |
Probability estimates of semiparametric mixture model for given data. |
f1 |
Probability estimates of log-concave (alternative) distribution of mixture model for given data. |
F |
Cumulative density estimates of mixture model for given data. |
localFDR |
localFDR estimates for given data. |
FDR |
FDR estimates for given data. |
iter |
Number of iterations of EM algorithm to compute localFDR. |
dim |
Dimension of the given data |
alternative |
A character string specifying the orientation of alternative distribution. |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.