library(CytoSpill) library(flowCore) library(ggplot2) library(Rtsne) library(dplyr) library(RColorBrewer) library(reshape2) library(Rphenograph)
#read expression data_Ana <- flowCore::exprs(flowCore::read.FCS("/Users/qmiao/CytoSpill copy/data/Ana_labeled.fcs", transformation = FALSE, truncate_max_range = FALSE)) #remove negative values if any data_Ana[which(data_Ana<0)] <- 0 load(file = "/Users/qmiao/CytoSpill copy/data/Ana_marker_population.Rdata") Ana_marker population_name_Ana
data_Ana_temp <- data_Ana[,3:46] #remove duplicates duplicates_id <- duplicated(data_Ana_temp) data_Ana_temp <- data_Ana_temp[!duplicates_id,]
Ana_results <- SpillComp(data = data_Ana_temp, cols = 1:44, n = 20000, threshold = 0.1, flexrep = 5, neighbor = 1) compensated_Ana <- Ana_results[[1]]
##compensated exprs compensated_Ana_exprs <- as.data.frame(flowCore::exprs(compensated_Ana)) compensated_Ana_exprs[,"label"] <- as.factor(data_Ana[,"label"][!duplicates_id]) ##uncompensated exprs data_Ana_temp <- as.data.frame(data_Ana_temp) data_Ana_temp[,"label"] <- as.factor(data_Ana[,"label"][!duplicates_id])
# downsample for faster calculation, plotting nsample = 20000 # subsample set.seed(123) rowsample <- sample(nrow(data_Ana_temp), nsample) compensated_Ana_exprs_downsample <- compensated_Ana_exprs[rowsample,] data_Ana_temp_downsample <- data_Ana_temp[rowsample,] #function to censor data, for clear heatmap censor_dat <- function (x, a = 0.99){ q = quantile(x, a) x[x > q] = q return(x) } #function for arcsinh transform transf <- function (x){asinh(x/5)}
calculate_pheno <- function (data, cols, asinhtransfer = T){ if (asinhtransfer <- T) { data[,cols] <- transf(data[,cols]) } pheno_out <- Rphenograph::Rphenograph(data[,cols]) cluster <- igraph::membership(pheno_out[[2]]) return(cluster) } uncompensated_pheno <- calculate_pheno(data_Ana_temp_downsample, cols = 1:44) compensated_pheno <- calculate_pheno(compensated_Ana_exprs_downsample, cols = 1:44)
calculate_tsne <- function (data, cols, asinhtransfer = T, verAnase = T, dims = 2, seed = 123){ set.seed(seed) tsne_dat <- data[,cols] #asinh/5 transfer if (asinhtransfer) {tsne_dat <- transf(tsne_dat)} tsne_out <- Rtsne::Rtsne(tsne_dat, verAnase = verAnase, dims = dims) return(tsne_out) } #calculate based on uncompensated data uncompensated_tsne = calculate_tsne(data_Ana_temp_downsample, cols = 1:44) # Setup some colors for plotting qual_col_pals = brewer.pal.info[brewer.pal.info$category == 'qual',] col_vector = unlist(mapply(brewer.pal, qual_col_pals$maxcolors, rownames(qual_col_pals)))
levels(data_Ana_temp_downsample$label) <- c(population_name_Ana) tclust = data_Ana_temp_downsample[,"label"] tsne_coor <- uncompensated_tsne$Y colnames(tsne_coor) <- c("tsne_1", "tsne_2") col_list <- c("#DC050C", "#FB8072", "#1965B0", "#7BAFDE", "#882E72", "#B17BA6", "#FF7F00", "#FDB462", "#E7298A", "#E78AC3", "#33A02C", "#B2DF8A", "#55A1B1", "#8DD3C7", "#A6761D", "#E6AB02", "#7570B3", "#BEAED4", "#666666", "#999999", "#aa8282", "#d4b7b7", "#8600bf", "#ba5ce3", "#808000", "#aeae5c", "#1e90ff", "#00bfff", "#56ff0d", "#ffff00") p = ggplot(as.data.frame(tsne_coor), aes(x=tsne_1, y=tsne_2))+ geom_point(size=0.3, alpha=1, aes(color=as.factor(tclust)))+ scale_color_manual(values = col_list, name = "cell type")+ ggtitle('Ana uncompensated data tsne')+ guides(color=guide_legend(override.aes=list(size=5)))+ theme(strip.background = element_blank(), panel.background=element_rect(fill='white', colour = 'black'), panel.grid.major=element_blank(), panel.grid.minor=element_blank(), plot.background=element_blank(), legend.key = element_blank()) p
tclust = uncompensated_pheno tsne_coor <- uncompensated_tsne$Y colnames(tsne_coor) <- c("tsne_1", "tsne_2") col_list <- c("#DC050C", "#FB8072", "#1965B0", "#7BAFDE", "#882E72", "#B17BA6", "#FF7F00", "#FDB462", "#E7298A", "#E78AC3", "#33A02C", "#B2DF8A", "#55A1B1", "#8DD3C7", "#A6761D", "#E6AB02", "#7570B3", "#BEAED4", "#666666", "#999999", "#aa8282", "#d4b7b7", "#8600bf", "#ba5ce3", "#808000", "#aeae5c", "#1e90ff", "#00bfff", "#56ff0d", "#ffff00") p = ggplot(as.data.frame(tsne_coor), aes(x=tsne_1, y=tsne_2))+ geom_point(size=0.3, alpha=0.8, aes(color=as.factor(tclust)))+ scale_color_manual(values = col_list, name = "Phenograph cluster")+ ggtitle('Ana uncompensated data tsne with Phenograph clusters')+ guides(color=guide_legend(override.aes=list(size=5),ncol=2))+ theme(strip.background = element_blank(), panel.background=element_rect(fill='white', colour = 'black'), panel.grid.major=element_blank(), panel.grid.minor=element_blank(), plot.background=element_blank(), legend.key = element_blank()) p
compensated_tsne = calculate_tsne(compensated_Ana_exprs_downsample, cols = 1:44)
levels(compensated_Ana_exprs_downsample$label) <- c(population_name_Ana) tclust = compensated_Ana_exprs_downsample[,"label"] tsne_coor <- compensated_tsne$Y colnames(tsne_coor) <- c("tsne_1", "tsne_2") col_list <- c("#DC050C", "#FB8072", "#1965B0", "#7BAFDE", "#882E72", "#B17BA6", "#FF7F00", "#FDB462", "#E7298A", "#E78AC3", "#33A02C", "#B2DF8A", "#55A1B1", "#8DD3C7", "#A6761D", "#E6AB02", "#7570B3", "#BEAED4", "#666666", "#999999", "#aa8282", "#d4b7b7", "#8600bf", "#ba5ce3", "#808000", "#aeae5c", "#1e90ff", "#00bfff", "#56ff0d", "#ffff00") p = ggplot(as.data.frame(tsne_coor), aes(x=tsne_1, y=tsne_2))+ geom_point(size=0.3, alpha=1, aes(color=as.factor(tclust)))+ scale_color_manual(values = col_list, name = "cell type")+ ggtitle('Ana compensated data tsne')+ guides(color=guide_legend(override.aes=list(size=5)))+ theme(strip.background = element_blank(), panel.background=element_rect(fill='white', colour = 'black'), panel.grid.major=element_blank(), panel.grid.minor=element_blank(), plot.background=element_blank(), legend.key = element_blank()) p
tclust = compensated_pheno tsne_coor <- compensated_tsne$Y colnames(tsne_coor) <- c("tsne_1", "tsne_2") col_list <- c("#DC050C", "#FB8072", "#1965B0", "#7BAFDE", "#882E72", "#B17BA6", "#FF7F00", "#FDB462", "#E7298A", "#E78AC3", "#33A02C", "#B2DF8A", "#55A1B1", "#8DD3C7", "#A6761D", "#E6AB02", "#7570B3", "#BEAED4", "#666666", "#999999", "#aa8282", "#d4b7b7", "#8600bf", "#ba5ce3", "#808000", "#aeae5c", "#1e90ff", "#00bfff", "#56ff0d", "#ffff00") p = ggplot(as.data.frame(tsne_coor), aes(x=tsne_1, y=tsne_2))+ geom_point(size=0.3, alpha=0.8, aes(color=as.factor(tclust)))+ scale_color_manual(values = col_list, name = "Phenograph cluster")+ ggtitle('Ana compensated data tsne with Phenograph clusters')+ guides(color=guide_legend(override.aes=list(size=5),ncol=2))+ theme(strip.background = element_blank(), panel.background=element_rect(fill='white', colour = 'black'), panel.grid.major=element_blank(), panel.grid.minor=element_blank(), plot.background=element_blank(), legend.key = element_blank()) p
the following plots the asinh(x/5) transformed intensities were normalized between 0-1 by using the 0.99 percentile of the data.
pdat <- transf(data_Ana_temp_downsample[,-45]) censor_pdat <- apply(pdat, 2, censor_dat) censor_pdat <- apply(censor_pdat, MARGIN = 2, FUN = function(X) (X - min(X))/diff(range(X))) ### add colnames dimnames(censor_pdat)[[2]] <- unname(Ana_marker[3:46]) censor_pdat <- as.data.frame(censor_pdat) censor_pdat$tsne_1 <- uncompensated_tsne$Y[,1] censor_pdat$tsne_2 <- uncompensated_tsne$Y[,2] pdat_melt <- reshape2::melt(censor_pdat, id.vars = c("tsne_1","tsne_2"), variable.name = "channel") p = ggplot(pdat_melt, aes(x=tsne_1, y=tsne_2, color=value))+ facet_wrap(~channel, scales = "free", ncol = 8)+ geom_point(alpha=0.5, size=0.3)+ scale_color_gradientn(colours=rev(brewer.pal(11, 'Spectral')), name='Counts', limits=c(0, 1))+ ggtitle("Compensated Ana markers")+ theme(strip.background = element_blank(), strip.text.x = element_text(size = 11), axis.line=element_blank(), axis.text.x=element_blank(), axis.text.y=element_blank(), axis.ticks=element_blank(), axis.title.x=element_blank(), axis.title.y=element_blank(), panel.background=element_blank(), panel.border=element_blank(), panel.grid.major=element_blank(), panel.grid.minor=element_blank(), plot.background=element_blank()) p #ggsave(filename = "/Users/qmiao/CytoSpill copy/scripts/plot/Ana_uncompensated_marker.png", plot = p,width=15, height=8, dpi = 300)
pdat <- transf(compensated_Ana_exprs_downsample[,-45]) censor_pdat <- apply(pdat, 2, censor_dat) censor_pdat <- apply(censor_pdat, MARGIN = 2, FUN = function(X) (X - min(X))/diff(range(X))) dimnames(censor_pdat)[[2]] <- unname(Ana_marker[3:46]) censor_pdat <- as.data.frame(censor_pdat) censor_pdat$tsne_1 <- uncompensated_tsne$Y[,1] censor_pdat$tsne_2 <- uncompensated_tsne$Y[,2] pdat_melt <- reshape2::melt(censor_pdat, id.vars = c("tsne_1","tsne_2"), variable.name = "channel") p = ggplot(pdat_melt, aes(x=tsne_1, y=tsne_2, color=value))+ facet_wrap(~channel, scales = "free", ncol = 8)+ geom_point(alpha=0.5, size=0.3)+ scale_color_gradientn(colours=rev(brewer.pal(11, 'Spectral')), name='Counts', limits=c(0, 1))+ ggtitle("Compensated Ana markers")+ theme(strip.background = element_blank(), strip.text.x = element_text(size = 11), axis.line=element_blank(), axis.text.x=element_blank(), axis.text.y=element_blank(), axis.ticks=element_blank(), axis.title.x=element_blank(), axis.title.y=element_blank(), panel.background=element_blank(), panel.border=element_blank(), panel.grid.major=element_blank(), panel.grid.minor=element_blank(), plot.background=element_blank()) p #ggsave(filename = "/Users/qmiao/CytoSpill copy/scripts/plot/Ana_compensated_marker.png", plot = p,width=15, height=8, dpi = 300)
pdat <- transf(compensated_Ana_exprs_downsample[,-45]) censor_pdat <- apply(pdat, 2, censor_dat) censor_pdat <- apply(censor_pdat, MARGIN = 2, FUN = function(X) (X - min(X))/diff(range(X))) dimnames(censor_pdat)[[2]] <- unname(Ana_marker[3:46]) censor_pdat <- as.data.frame(censor_pdat) censor_pdat$tsne_1 <- compensated_tsne$Y[,1] censor_pdat$tsne_2 <- compensated_tsne$Y[,2] pdat_melt <- reshape2::melt(censor_pdat, id.vars = c("tsne_1","tsne_2"), variable.name = "channel") p = ggplot(pdat_melt, aes(x=tsne_1, y=tsne_2, color=value))+ facet_wrap(~channel, scales = "free", ncol = 8)+ geom_point(alpha=0.5, size=0.3)+ scale_color_gradientn(colours=rev(brewer.pal(11, 'Spectral')), name='Counts', limits=c(0, 1))+ ggtitle("Compensated Ana markers on compensated tsne")+ theme(strip.background = element_blank(), strip.text.x = element_text(size = 11), axis.line=element_blank(), axis.text.x=element_blank(), axis.text.y=element_blank(), axis.ticks=element_blank(), axis.title.x=element_blank(), axis.title.y=element_blank(), panel.background=element_blank(), panel.border=element_blank(), panel.grid.major=element_blank(), panel.grid.minor=element_blank(), plot.background=element_blank()) p #ggsave(filename = "/Users/qmiao/CytoSpill copy/scripts/plot/Ana_compensated_marker on compensated tsne.png", plot = p,width=15, height=8, dpi = 300)
library(reshape2) plot_multi_histogram <- function(df, feature, label_column, cutoff) { plt <- ggplot(df, aes(x=eval(parse(text=feature)), fill=eval(parse(text=label_column)))) + geom_histogram(alpha=0.7, position="identity", aes(y = ..density..), color="black") + geom_density(alpha=0.2) + geom_vline(aes(xintercept=cutoff), color="black", linetype="dashed", size=1) + labs(x=feature, y = "Density") + theme_classic() plt + guides(fill=guide_legend(title=label_column)) + scale_fill_discrete(labels = c("Uncompensated", "Compensated")) } prep_hist_pdata <- function(df1, df2, feature, cutoffs) { exprs1 <- df1[feature] exprs1 <- exprs1[which(exprs1<quantile(exprs1[,1],0.99)),] # exprs1 <- exprs1[which(exprs1>0),] exprs2 <- df2[feature] exprs2 <- exprs2[which(exprs2<quantile(exprs2[,1],0.99)),] # exprs2 <- exprs2[which(exprs2>0),] label <- c(rep("dat1", length(exprs1)), rep("dat2", length(exprs2))) df <- cbind(c(exprs1,exprs2), label) colnames(df) <- c("value", "label") df <- as.data.frame(df) df[,1] <- as.numeric(as.character(df[,1])) df[,1] <- asinh(df[,1]/5) cutoff <- asinh(cutoffs[match(feature, colnames(df1))]/5) return(list(df,cutoff)) } ana_pt194di <- prep_hist_pdata(data_Ana_temp_downsample, compensated_Ana_exprs_downsample, feature = "Pt194Di", cutoffs = Ana_results[[3]]) plot_multi_histogram(ana_pt194di[[1]], feature="value", label_column = "label", cutoff = ana_pt194di[[2]]) # ana_er166di <- prep_hist_pdata(data_Ana_temp_downsample, compensated_Ana_exprs_downsample, feature = "Er166Di", cutoffs = Ana_results[[3]]) # plot_multi_histogram(ana_er166di[[1]], feature="value", label_column = "label", cutoff = ana_er166di[[2]])
write.FCS(flowFrame(as.matrix(data_Ana_temp[,-45])), filename = "~/CytoSpill copy/data/flowSOM/data_Ana_temp.fcs") write.FCS(flowFrame(as.matrix(compensated_Ana_exprs[,-45])), filename = "~/CytoSpill copy/data/flowSOM/compensated_Ana_exprs.fcs")
save.image("~/CytoSpill copy/data/Ana_analysis.Rdata") sessionInfo()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.