knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)

library(qmra.db)
db_content <- qmra.db::import_database_content()
health <- db_content$health

cat("\n# Pathogen Groups  \n\n")

for (i in 1:nrow(health )) {

  sel_health <- health[i,]

cat(sprintf("\n## %s (%s)\n\n%s\n\n", 
        sel_health$PathogenGroup, 
        sel_health$PathogenName,
        sel_health$PathogenGroupDescription))
}
inflow <- db_content$inflow %>% 
 dplyr::filter(PathogenID %in% dplyr::pull(health[,"PathogenID"]))

water_sources_inflow <- inflow %>% 
  dplyr::count(.data$WaterSourceID,
               .data$WaterSourceName, 
               .data$WaterSourceDescription) 

cat("\n\n\n# Inflow\n")

for (i in 1:nrow(water_sources_inflow)) {

  sel_source <- water_sources_inflow[i,]

  sel_inflow_tbl <- inflow %>% 
    dplyr::filter(WaterSourceID == water_sources_inflow$WaterSourceID[i]) %>% 
    dplyr::select(.data$WaterSourceName,
                  .data$PathogenGroup, 
                  .data$PathogenName, 
                  .data$min, 
                  .data$max, 
                  .data$ReferenceName,
                  .data$distribution)

cat(sprintf("\n## %s\n\n%s\n\n", 
        sel_source$WaterSourceName, 
        sel_source$WaterSourceDescription))

print(knitr::kable(sel_inflow_tbl))

}
treatment <- db_content$treatment


cat("\n\n\n# Treatment\n")


treatment_group <- treatment %>% 
  dplyr::count(.data$TreatmentGroup)





for (i in 1:nrow(treatment_group)) {

  sel_treatment_group <- dplyr::pull(treatment_group[i,"TreatmentGroup"])


  cat(sprintf("\n\n## %s\n", sel_treatment_group))

  treatment_processes <- treatment %>% 
  dplyr::count(.data$TreatmentID, 
               .data$TreatmentGroup,
               .data$TreatmentName, 
               .data$TreatmentDescription) %>%  
  dplyr::filter(TreatmentGroup == sel_treatment_group)

  for (j in 1:nrow(treatment_processes)) {

    sel_treatment_process <- treatment_processes[j,]

    sel_treatment_process_tbl <- treatment %>% 
  dplyr::filter(TreatmentID == dplyr::pull(sel_treatment_process[,"TreatmentID"])) %>% 
    dplyr::select(.data$TreatmentName, 
                  .data$PathogenGroup,
                  .data$min,
                  .data$max,
                  .data$ReferenceName,
                  .data$distribution)

    cat(sprintf("\n### %s\n\n%s\n\n", 
        sel_treatment_process$TreatmentName, 
        sel_treatment_process$TreatmentDescription))


  print(knitr::kable(sel_treatment_process_tbl))

  }



}
ingestion <- db_content$ingestion


cat("\n\n\n# Ingestion\n")


for (i in 1:nrow(ingestion)) {

  sel_ingestion <- ingestion[i,]

  sel_ingestion_tbl <- sel_ingestion %>% 
    dplyr::select(.data$WaterUseName, 
                  .data$events_perYear,
                  .data$litres_perEvent,
                  .data$ReferenceName) 
  cat(sprintf("\n## %s\n\n%s\n\n", 
        sel_ingestion$WaterUseName, 
        sel_ingestion$WaterUseDescription))

  print(knitr::kable(sel_ingestion_tbl))
}

Dose-Response

dose_response_tbl <- db_content$dose_response %>% 
 dplyr::filter(PathogenID %in% dplyr::pull(health[,"PathogenID"])) %>% 
 dplyr::select(.data$PathogenGroup,
               .data$PathogenName, 
               .data$Bestfitmodel,
               .data$k,
               .data$alpha,
               .data$N50, 
               # .data$Hosttype,
               # .data$Doseunits,
               # .data$Route,
               # .data$Response,
               .data$ReferenceName)

knitr::kable(dose_response_tbl)

Health

health_tbl <- db_content$health %>% 
  dplyr::select(.data$PathogenGroup, 
                .data$PathogenName,
                .data$infection_to_illness, 
                .data$dalys_per_case, 
                .data$ReferenceName)

knitr::kable(health_tbl)


KWB-R/qmra.db documentation built on Sept. 7, 2019, 5:28 a.m.