MEM | R Documentation |
MEM is used to adjust models with errors in the variables. It can be used to perform regressions on variables that have measurement errors.
MEM(
x,
y,
lambda_x,
Correction = FALSE,
method = "Bartlett",
conf.level = 0.95,
...
)
x |
Values vector |
y |
Values vector |
lambda_x |
Ratio of variances between values and error |
Correction |
Small sample correction, use TRUE or FALSE |
method |
The correction method that will be considered "Bartlett", "B1" or "B2" |
conf.level |
Significance level for the hypothesis test |
... |
Not always use all arguments |
Only use the conf.level, beta_til e method arguments when running equals "Y", otherwise these arguments will not affect the results.
Estimated Parameters x
e y
.
Kaíque Ferreira Henrique de Souza
Tatiane Ferreira do N. M. da Silva
Bartlett, M.S. (1937), Properties of sufficiency and statistical tests,Proceedings of RoyalSociety of London A, 160, 268-282.
Fuller, S. (1987),Measurement Error Models. Wiley, New York.
Melo, T.F.N., Vasconcellos, K.L.P., Lemonte, A.J. (2009). Some restriction tests in a newclass of regression models for proportions.Computational Statistics and Data Analysis, 53,3972–3979.
lm
x = seq(1,100,length.out = 100)
y = sort(runif(100,1,10))
MEM(x, y, lambda_x = 2 )
MEM(x, y, lambda_x = 1, conf.level = 0.95 ,Correction = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.