plot_compare: Graphic Comparison Between Estimates and True Values

Description Usage Arguments Details See Also Examples

Description

Provided that you have the true values of missing observations, you can compare them with the results of interpolation. plot_compare visualizes the comparison between estimates and true values. (NB: this plotting function can also be used in other similar situations involving comparison between estimates and true values.)

Usage

1
plot_compare(est, true, cex = 1, width = 1, P = 6/7, AI = TRUE)

Arguments

est

a numeric vector; estimations.

true

a numeric vector; true values.

cex

numeric; size of point to be plotted. (default: 1)

width

numeric; width of fitted straight line. (default: 1)

P

numeric, between 0 and 1; position for superimposing values of appraisal indexes. (default: 6/7)

AI

logical; TRUE for presenting appraisal indexes while FALSE for not. (default: TRUE)

Details

Attentions:

In the plot:

See Also

appraisal_index

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
## Not run: 

## TSCS spatial interpolation procedure:

basis <- tscsRegression(data = data, h = 1, v = 1, alpha = 0.01) # regression
basis$percentage # see the percentage of cointegrated relationships
est <- tscsEstimate(matrix = basis$coef_matrix, newdata = newdata, h = 1, v = 1) # estimation
str(est)

## comparison of estimates and true values:

plot_compare(est = est$estimate[,3], true = true) # graphic comparison
index <- appraisal_index(est = est$estimate[,3], true = true); # RMSE & std
index

## data visualization:

plot_dif(data = data[,1:2], h = 1, v = 1) # differentiate boundary and interior spatial locations
plot_NA(newdata = newdata) # show spatial locations with missing value, for a cross-section data
plot_map(newdata = newdata) # plot the 2D spatial map, for a cross-section data

## End(Not run)

Kaversoniano/R-package-TSCS documentation built on May 13, 2019, 10:03 a.m.