# HELPER FUNCTION 1 #####
# This function will take a vector x of raw snow observations. It will then
# split the vector across n or more m's into a list of vectors.
# > x <- c(1, 2, 0, 0, 0, 4, 5, 0, 3, 0, 0, 2, 1, 3)
# > split_across_n_m(x)
# $`0`
# [1] 1 2
# $`1`
# [1] 4 5 0 3
# $`2`
# [1] 2 1 3
split_across_n_m <- function(x, n = 2, m = 0) {
r <- rle(x == m)
r$values <- cumsum(r$values & r$lengths > n - 1)
result <- lapply(split(x, inverse.rle(r)), function(r) r[cummax(r) > m])
return(result)
}
# HELPER FUNCTION 2 #####
# Because of HELPER FUNCTION 1, the HELPER FUNCTION 2 assumes to work with
# d3_cands and dx which is derived from raw observations with no consecutive 0's.
# This function will take the TRUE d3_cands, sum up three consecutive days for
# the D3 Method. If that sum is positive, it will add it to the result, and
# falsify the three days used. If that sum is not positive it will do nothing.
# Looping through it will return the result.
Rcpp::cppFunction('NumericVector calc_d3_method(LogicalVector d3_cands,
NumericVector dx) {
int n = 3;
NumericVector result;
for (int i = 0; i < d3_cands.size(); i++) {
if (d3_cands[i] == true) {
int sum = 0;
for (int j = i; j < i + n; j++) {
sum += dx[j];
}
if (sum > 0) {
result.push_back(sum);
for (int j = i + 1; j < i + n; j++) {
d3_cands[j] = false;
}
}
}
}
return result;
}')
# HELPER FUNCTION 3 #####
# Because of HELPER FUNCTION 1, the HELPER FUNCTION 3 assumes to work with
# raw observations with no consecutive 0's.
# This function will take raw observations, make sure there is enough data to
# perform the D3 Method (if not, it will return NULL), and then calculate
# the D3 Method.
d3_method_from_vector <- function(x) {
n <- 3
if (length(x) < n + 1) {
return(NULL)
}
dx <- x[-1] - x[-length(x)]
d3_cands <- dx[1:(length(dx) - (n - 1))] > 0 & dx[n:length(dx)] > 0
result <- calc_d3_method(d3_cands, dx)
return(result)
}
#' Calculate D3 Method for Snow Loads
#'
#' @description Given a dataframe, a column of which includes snow observations,
#' this function will calculate the D3 Method.
#'
#' @param df The dataframe containing snow observations.
#' @param col_name Character string of the column name containing the
#' snow observations.
#'
#' @return A list of numeric vectors containing the observations
#' for the D3 Method (list split across 2 or more raw observations of 0).
#'
#' @export
d3_method <- function(df, col_name = "SWE") {
x <- df[[col_name]]
split_observations <- split_across_n_m(x)
result <- lapply(split_observations, d3_method_from_vector)
return(result)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.