library(isorunN2O)
Load data (from excel by default, from raw .dxf files is also presented but commented out, can delete if not used), assign categories, evaluate drift, correct for O17.
data.raw <- ### approach #1: reading from original dxf files ### # # TODO: change to local folder # load_run_folder("%s", quiet = T) %%>%% # # pull out the data summary from the raw isodat file: # get_isodat_data_tables() %%>%% # # derive file categories: # parse_file_names() %%>%% # # discard the reference peaks: # select_N2O_peak( c(%d, %d) ) %%>%% # # focus on the columns we care about: # rename(d45 = `d 45N2O/44N2O`, d46 = `d 46N2O/44N2O`, area = `Intensity All`) %%>%% ### approach #2: reading from N2O data viewer excel export ### # TODO: change to local folder readxl::read_excel("%s", sheet = "data") %%>%% ### regular processing for both approaches ### # select which columns to keep: select_columns(folder, date, analysis, run_number, category, name, volume, area, d45, d46, quiet = TRUE) %%>%% # identify excluded analyses change_category(run_number %%in%% c(%s), "excluded") %%>%% # drift correction evaluate_drift( d45, d46, correct = %s, plot = TRUE, method = "%s", span = %s, correct_with = category %%in%% c(%s)) %%>%% # O17 correction correct_N2O_for_17O(d45.drift, d46.drift) %%>%% # introduce groupings for the lab reference, standard 1 & 2 left_join( bind_rows( data_frame(category = c(%s), group = "Lab ref"), data_frame(category = c(%s), group = "Standard 1"), data_frame(category = c(%s), group = "Standard 2") ), by = "category" ) %%>%% # introduce color and paneling for easier plotting mutate( panels = factor(group, levels = c("Lab ref", "Standard 1", "Standard 2")), colors = ifelse(group %%in%% c("Standard 1", "Standard 2"), name, category))
Here for d15.raw but could use others.
# static plot data.raw %%>%% plot_overview(d15.raw, color = colors, panel = panels) # make into interactive version make_interactive()
Here for d15.raw and d18.raw but could use different ones or more than these two.
data.raw %%>%% # filter raw data to only look at the standards filter(group %%in%% c("Standard 1", "Standard 2")) %%>%% # multie variable plot overview for d15.raw and d18.raw plot_overview(d15.raw, d18.raw, color = colors) + # make use of ggplot's facet_wrap for panelling facet_wrap(panel ~ group, scales = "free", ncol = 2)
Calculate concentrations and calibrate against isotopic standards. This is not implmented in the UI, implement this manually if interested in using.
# data.cal <- data.raw %%>%% # # calculate the background area based on analyses named 'background' # calculate_background(area, criteria = name %%in%% c("background")) %%>%% # # set the background area manually (use this as alternative to calculate_background) # set_background(0.251) %%>%% # # calculate the concentrations based on the standards (here with naming patter XuM) # calculate_concentrations(area, volume, conc_pattern = "(\\d+)uM", # standards = category %%in%% c("USGS-34", "IAEA-NO3")) %%>%% # # calibrate d15 based on the two provided standards # calibrate_d15(d15.raw, standards = c(`USGS-34` = -1.8, `IAEA-NO3` = 4.7)) %%>%% # # calibrate d18 based on the two provided standards # calibrate_d18(d18.raw, cell_volume = 1.5, standards = c(`USGS-34` = -27.93, `IAEA-NO3` = 25.61))
Here for the raw data but could use for calibrated data as well.
data.raw %%>%% # use grouping to calculate averages / stdevs for each group group_by(category, name) %%>%% # include d15.raw and d18raw as well as the area and include all samples generate_data_table(d15.raw, d18.raw, area, cutoff = 0) %%>%% # sort data ungroup() %%>%% arrange(desc(n), name) %%>%% # output in table format knitr::kable(digits = 2)
Example of exporting specific parts of the data (not run here)
data.raw %%>%% # only select columns not starting with p., ending in .raw or .drift and # rename some columns while we're at it select(-starts_with("p."), -ends_with(".raw"), -ends_with(".drift"), d15 = d15.raw, d18 = d18.raw) %%>%% # sorting arrange(category, name) %%>%% # # export (not run, uncomment to run) # openxlsx::write.xlsx(file = "export.xlsx") %%>%% invisible() # invisible instead
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.