library(BiocStyle)
knitr::opts_chunk$set(error=FALSE, message=FALSE, warning=FALSE)

Overview

This RNA-seq dataset was downloaded from the Database of Immune Cell Expression(/eQTLs/Epigenomics). Every sample represents the transcriptome of a specific cell type; this data is therefore well suited to be used as a general training data set for the typical r Biocpkg("SingleR") analysis. Values were already TPM normalized, so the additional processing was only done to remove genes with no reads across samples, collapse duplicate genes, and log2 normalize values. Main and fine labels were manually assigned to each sample based on cell type as specified on the DICE website.

Data retrieval

First, we define a function to do the heavy lifting of processing the files.

library(BiocFileCache)
bfc <- BiocFileCache(ask = FALSE)
pullFromDICE <- function(prefix) {
    url <- sprintf("https://dice-database.org/download/%s_TPM.csv", prefix)
    ref <- bfcrpath(bfc, url)
    df <- read.csv(ref, as.is = TRUE)
    mat <- as.matrix(df[,4:ncol(df)])
    rownames(mat) <- sub(";.*", "", df$Additional_annotations)
    mat
}

Now we proceed to pull down files.

collected <- list()
for (celltype in c(
    "B_CELL_NAIVE",
    "MONOCYTES",
    "M2",
    "NK",
    "TREG_MEM",
    "CD4_NAIVE",
    "CD4_STIM",
    "TREG_NAIVE",
    "TFH",
    "TH1",
    "THSTAR",
    "TH17",
    "TH2",
    "CD8_NAIVE",
    "CD8_STIM")) 
{
    collected[[celltype]] <- pullFromDICE(celltype)
    print(paste(celltype, "contains", ncol(collected[[celltype]]), "samples"))
}
stopifnot(length(unique(lapply(collected, rownames)))==1L)

We verify that all of their gene names are the same. We then combine all samples into a giant matrix.

dice <- do.call(cbind, collected)
dim(dice)

Genes with no reads in any samples don't provide any value for our purpose, so we will remove these.

dice <- dice[rowSums(dice) != 0, ]
dim(dice)

A small number of genes are duplicated, so those will be collapsed by keeping the instances with the highest median of reads across samples.

library(matrixStats)
dice <- dice[order(rownames(dice), -rowMedians(dice)),]
dice <- dice[!duplicated(rownames(dice)), ]
dim(dice)

Then we will log~2~-normalize after adding a pseudocount of 1.

logcounts <- log2(dice+1)

Sample labelling

We can now apply human-readable labels to each sample. Our print logs from the CombineSamples function provide the number of samples in each file, allowing us to create label vectors of the correct size.

numcells <- vapply(collected, ncol, 0L)

fine.dict <- c(
    B_CELL_NAIVE="B cells, naive",
    MONOCYTES="Monocytes, CD14+",
    M2="Monocytes, CD16+",
    NK="NK cells",
    TREG_MEM="T cells, CD4+, memory TREG",
    CD4_NAIVE="T cells, CD4+, naive",
    CD4_STIM="T cells, CD4+, naive, stimulated",
    TREG_NAIVE="T cells, CD4+, naive TREG",
    TFH="T cells, CD4+, TFH",
    TH1="T cells, CD4+, Th1",
    THSTAR="T cells, CD4+, Th1_17",
    TH17="T cells, CD4+, Th17",
    TH2="T cells, CD4+, Th2",
    CD8_NAIVE="T cells, CD8+, naive",
    CD8_STIM="T cells, CD8+, naive, stimulated"
)
fine <- rep(fine.dict[names(collected)], numcells)

main.dict <- c(
    B_CELL_NAIVE="B cells",
    MONOCYTES="Monocytes",
    M2="Monocytes",
    NK="NK cells",
    TREG_MEM="T cells, CD4+",
    CD4_NAIVE="T cells, CD4+",
    CD4_STIM="T cells, CD4+",
    TREG_NAIVE="T cells, CD4+",
    TFH="T cells, CD4+",
    TH1="T cells, CD4+",
    THSTAR="T cells, CD4+",
    TH17="T cells, CD4+",
    TH2="T cells, CD4+",
    CD8_NAIVE="T cells, CD8+",
    CD8_STIM="T cells, CD8+"
)
main <- rep(main.dict[names(collected)], numcells)

stopifnot(all(!is.na(main)))
stopifnot(all(!is.na(fine)))

library(S4Vectors)
coldata <- DataFrame(row.names = colnames(logcounts),
    label.main = unname(main), label.fine = unname(fine))

Saving to file

Now the counts and metadata can be saved for upload to r Biocpkg("ExperimentHub").

path <- file.path("celldex", "dice", "1.0.0")
dir.create(path, showWarnings = FALSE, recursive = TRUE)

saveRDS(logcounts, file = file.path(path, "logcounts.rds"))
saveRDS(coldata, file = file.path(path, "coldata.rds"))

Session info

sessionInfo()


LTLA/CellTypeReferences documentation built on June 1, 2024, 12:12 p.m.