pfocal_fast_gaussian_radius | R Documentation |
Methods wrapping pfocal to implement common kernel computations with default argument values.
pfocal_fast_gaussian_radius( data, vertical_radius, vertical_sd = 1, horizontal_radius = vertical_radius, horizontal_sd = vertical_sd, tail_included = TRUE, na.rm = NA, mp = TRUE, debug_use_r_implementation = FALSE, ..., transform_function = "MULTIPLY", reduce_function = "SUM", mean_divider = "ONE", variance = FALSE ) pfocal_fast_gaussian_confidence( data, vertical_r0 = 0.05, vertical_sd = 1, horizontal_r0 = vertical_r0, horizontal_sd = vertical_sd, tail_included = TRUE, na.rm = NA, mp = TRUE, debug_use_r_implementation = FALSE, ..., transform_function = "MULTIPLY", reduce_function = "SUM", mean_divider = "ONE", variance = FALSE ) pfocal_fast_binomial( data, vertical_radius, horizontal_radius = vertical_radius, na.rm = NA, mp = TRUE, debug_use_r_implementation = FALSE, ..., transform_function = "MULTIPLY", reduce_function = "SUM", mean_divider = "ONE", variance = FALSE ) pfocal_fast_abs_rectangle( data, height, width = height, value = 1, na.rm = NA, mp = TRUE, debug_use_r_implementation = FALSE, ..., transform_function = "MULTIPLY", reduce_function = "SUM", mean_divider = "ONE", variance = FALSE ) pfocal_fast_separated( data, kernel_list, na.rm = NA, mp = TRUE, debug_use_r_implementation = FALSE, ..., transform_function = "MULTIPLY", reduce_function = "SUM", mean_divider = "ONE", variance = FALSE )
data |
[matrix-type] Grid to compute onto. |
vertical_radius |
[numeric] The kernel's radius in the vertical dimension. |
vertical_sd |
[numeric] The kernel's standard deviation in the vertical dimension. |
horizontal_radius |
[numeric] The kernel's radius in the horizontal dimension. |
horizontal_sd |
[numeric] The kernel's standard deviation in the horizontal dimension. |
tail_included |
[logical] Whether or not to include the kernel tail. |
na.rm |
[NA OR logical] The behavior to adopt for dealing with
missing values, default to |
mp |
[logical] Whether to use the open_mp implementation,
default to |
debug_use_r_implementation |
[logical] Used for debugging purposes
whether to use the slow R implementation instead of the fast C++ code.
Default to |
... |
None used at the moment . |
transform_function |
[character] The function to apply to the
cell values covered by the kernel. For possible values, see
|
reduce_function |
[character] The function to apply to the kernel
values after the function passed in |
mean_divider |
[character] Optional, allows to specify how the
final value at each cell is divided by a value that can be function of
the intermediate data resulting of applying |
variance |
[logical] Whether to return the "variance" of the
intermediate values at each point (for more details please see
|
vertical_r0 |
[numeric] The kernel's r0 (exponential) in the vertical dimension. |
horizontal_r0 |
[numeric] The kernel's r0 (exponential) in the horizontal dimension. |
height |
[numeric] For rectangular kernels, the height of the rectangle. |
width |
[numeric] For rectangular kernels, the width of the rectangle. |
value |
[numeric] For single value matrices, the value. |
kernel_list |
[list] A list of kernels computed from functions in kernel-gaussian, kernel-binomial, kernel-circular, kernel-distance, kernel-exponential. |
The updated, convoluted grid.
data <- matrix(nrow = 10, ncol = 10, data = runif(10 * 10)) pfocal_fast_gaussian_radius(data, vertical_radius = 2) pfocal_fast_gaussian_confidence(data) pfocal_fast_binomial(data, vertical_radius = 2) pfocal_fast_abs_rectangle(data, height = 2) pfocal_fast_separated(data, kernel_list = list(binomial_kernel(vertical_radius = 2, horizontal_radius = 2), distance_kernel(vertical_radius = 2, horizontal_radius = 2)))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.