| dist.Asymmetric.Log.Laplace | R Documentation |
These functions provide the density, distribution function, quantile
function, and random generation for the univariate, asymmetric,
log-Laplace distribution with location parameter \mu,
scale parameter \lambda, and asymmetry or skewness
parameter \kappa.
dallaplace(x, location=0, scale=1, kappa=1, log=FALSE)
pallaplace(q, location=0, scale=1, kappa=1)
qallaplace(p, location=0, scale=1, kappa=1)
rallaplace(n, location=0, scale=1, kappa=1)
x, q |
These are each a vector of quantiles. |
p |
This is a vector of probabilities. |
n |
This is the number of observations, which must be a positive integer that has length 1. |
location |
This is the location parameter |
scale |
This is the scale parameter |
kappa |
This is the asymmetry or skewness parameter
|
log |
Logical. If |
Application: Continuous Univariate
Density 1: p(\theta) = \exp(-\mu)\frac{(\sqrt(2)\kappa / \lambda)(\sqrt(2) / \lambda\kappa)}{(\sqrt(2)\kappa / \lambda)+(\sqrt(2) / (\lambda\kappa))} \exp(-(\frac{\sqrt(2)\kappa}{\lambda})+1), \quad \theta \ge \exp(\mu)
Density 2: p(\theta) = \exp(-\mu) \frac{(\sqrt(2)\kappa / \lambda) (\sqrt(2) / (\lambda\kappa))}{(\sqrt(2)\kappa / \lambda) + (\sqrt(2) / (\lambda\kappa))} \exp(\frac{\sqrt(2)(\log(\theta)-\mu)}{\lambda\kappa} - (\log(\theta)-\mu)), \quad \theta < \exp(\mu)
Inventor: Pierre-Simon Laplace
Notation 1: \theta \sim \mathcal{ALL}(\mu, \lambda,
\kappa)
Notation 2: p(\theta) = \mathcal{ALL}(\theta | \mu,
\lambda, \kappa)
Parameter 1: location parameter \mu
Parameter 2: scale parameter \lambda > 0
Mean: E(\theta) =
Variance: var(\theta) =
Mode: mode(\theta) =
The univariate, asymmetric log-Laplace distribution is derived from the Laplace distribution. Multivariate and symmetric versions also exist.
These functions are similar to those in the VGAM package.
dallaplace gives the density,
pallaplace gives the distribution function,
qallaplace gives the quantile function, and
rallaplace generates random deviates.
Kozubowski, T. J. and Podgorski, K. (2003). "Log-Laplace Distributions". International Mathematical Journal, 3, p. 467–495.
dalaplace,
dexp,
dlaplace,
dlaplacep,
dllaplace,
dmvl,
dnorm,
dnormp,
dnormv.
library(LaplacesDemon)
x <- dallaplace(1,0,1,1)
x <- pallaplace(1,0,1,1)
x <- qallaplace(0.5,0,1,1)
x <- rallaplace(100,0,1,1)
#Plot Probability Functions
x <- seq(from=0.1, to=10, by=0.1)
plot(x, dallaplace(x,0,1,0.5), ylim=c(0,1), type="l", main="Probability Function",
ylab="density", col="red")
lines(x, dallaplace(x,0,1,1), type="l", col="green")
lines(x, dallaplace(x,0,1,5), type="l", col="blue")
legend(5, 0.9, expression(paste(mu==0, ", ", lambda==1, ", ", kappa==0.5),
paste(mu==0, ", ", lambda==1, ", ", kappa==1),
paste(mu==0, ", ", lambda==1, ", ", kappa==5)),
lty=c(1,1,1), col=c("red","green","blue"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.