HDTSA
An implementation for high-dimensional time series analysis methods, including: factor model for vector time series proposed by Lam and Yao (2012) \<doi:10.1214/12-AOS970> and Chang, Guo and Yao (2015) \<doi:10.1016/j.jeconom.2015.03.024>, martingale difference test proposed by Chang, Jiang and Shao (2022) \<doi:10.1016/j.jeconom.2022.09.001>, principal component analysis for vector time series proposed by Chang, Guo and Yao (2018) \<doi:10.1214/17-AOS1613>, cointegration analysis proposed by Zhang, Robinson and Yao (2019) \<doi:10.1080/01621459.2018.1458620>, unit root test proposed by Chang, Cheng and Yao (2021) \<doi:10.1093/biomet/asab034>, white noise test proposed by Chang, Yao and Zhou (2017) \<doi:10.1093/biomet/asw066>, CP-decomposition for high-dimensional matrix time series proposed by Chang, He, Yang and Yao (2023) \<doi:10.1093/jrsssb/qkac011> and Chang, Du, Huang and Yao (2024) \<doi:10.48550/arXiv.2410.05634>, and Statistical inference for high-dimensional spectral density matrix porposed by Chang, Jiang, McElroy and Shao (2023) \<doi:10.48550/arXiv.2212.13686>.
You can install the released version of HDTSA
from
CRAN with:
install.packages("HDTSA")
Or try the development version on GitHub:
# install.packages("devtools")
devtools::install_github("Linc2021/HDTSA")
This is a basic example which shows you how to solve a unit root test problem :
library(HDTSA)
N=100
Y=arima.sim(list(ar=c(0.9)), n = 2*N, sd=sqrt(1))
con_vec=c(0.45,0.55,0.65)
lagk.vec=c(0,1,2)
UR_test(Y,lagk.vec=lagk.vec, con_vec=con_vec,alpha=0.05)
#>
#> Testing for unit roots based on sample autocovariances
#>
#> Reject the null hypothesis or not with different argument
#> time_lag=0 time_lag=1 time_lag=2
#> con=0.45 0 0 0
#> con=0.55 0 0 0
#> con=0.65 0 0 0
UR_test(Y,alpha=0.05)
#>
#> Testing for unit roots based on sample autocovariances
#>
#> Reject the null hypothesis or not with different argument
#> time_lag=0 time_lag=1 time_lag=2 time_lag=3 time_lag=4
#> con=0.55 0 0 0 0 0
Here, we have provided just one example. You can use functions within
the package HDTSA
to solve other problems. For details, please refer
to
help("HDTSA")
Please send an email to Chen Lin(linchen@smail.swufe.edu.cn).
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.