knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "man/figures/README-", out.width = "100%" )
The goal of VariantsID is to ...
You can install the development version of VariantsID like so:
devtools::install_github("Linda24bc/VariantsID")
library(VariantsID)
1.1 Input the original database
HbDatabase <- read_csv("Hb Variants_OriginalDatabase.csv")
1.2 Use the MS1 data to narrow down the database, if the mass shift is about -0.93 Da, then the Mshift is -0.93 Da and the error tolerence is 0.06 Da. Thoese two values are changable and depend on the accuracy of deconvolution.
ref <- SubDatabase(HbDatabase, Mshift= -0.93, error_Da_L=-0.05, error_Da_R=0.06)
The list should contain two columns, Exp_m/z vs Exp_Intensity)
exp <- read_csv("expt mass_cHbSS.csv")
Run the function Variants.Identifier, the ppm_error range is changable and depends on the accuracy of the MS2 data. View the result list and get the identification.
ID.results <- Variants.Identifier(ref, exp, ppm_error_start=-2, ppm_error_end=5)
write.csv(ID.results, "ID_cHbSS.csv", row.names = FALSE)
diag_ref <- read.csv("finddiag.csv")
WT_ref <- read.csv("ref mass list_pro_1.csv")
Multiple sequences of variants sequences can be included in one .fasta file, the sequences should have the N-terminal Met while the comparison results exclude the N-ternimal Met.
Hbvariants <- seqinr::read.fasta(file = "Hbvariants.fasta", seqtype = "AA",as.string = FALSE)
WT <- seqinr::read.fasta(file = "HbA.fasta", seqtype = "AA",as.string = FALSE)
PD.result <- PredictDiag(WT,WT_ref,diag_ref,Hbvarinats)
write.csv(PD.result, "PredictDiag_variants20.csv", row.names = FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.