knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>",
  fig.path = "man/figures/README-",
  out.width = "100%"
)

VariantsID

The goal of VariantsID is to ...

Installation

You can install the development version of VariantsID like so:

devtools::install_github("Linda24bc/VariantsID")

Introduction

Example

library(VariantsID)

Step 1. Input the database including the diagnostic ions of Hb varints and use MS1 data to narrow down the database - subset the database

1.1 Input the original database

HbDatabase <- read_csv("Hb Variants_OriginalDatabase.csv")

1.2 Use the MS1 data to narrow down the database, if the mass shift is about -0.93 Da, then the Mshift is -0.93 Da and the error tolerence is 0.06 Da. Thoese two values are changable and depend on the accuracy of deconvolution.

ref <- SubDatabase(HbDatabase, Mshift= -0.93, error_Da_L=-0.05, error_Da_R=0.06)

Step 2. Input the deconvolve MS2 results

The list should contain two columns, Exp_m/z vs Exp_Intensity)

exp <- read_csv("expt mass_cHbSS.csv")

Step 3. Search the experimental results in the subset database with Variant Identifier

Run the function Variants.Identifier, the ppm_error range is changable and depends on the accuracy of the MS2 data. View the result list and get the identification.

ID.results <- Variants.Identifier(ref, exp, ppm_error_start=-2, ppm_error_end=5)

Step 4. Output the results in .csv

write.csv(ID.results, "ID_cHbSS.csv", row.names = FALSE)

PredictDiag

Introduction

Step 1: Input the list of residue numbers of possible diagnostic ions for each AA in the Hb beta,and the list of reference product ions for HbA beta

diag_ref <- read.csv("finddiag.csv")

WT_ref <- read.csv("ref mass list_pro_1.csv")

Step 2: Input the sequennces of HbA beta and Hb beta variants

Multiple sequences of variants sequences can be included in one .fasta file, the sequences should have the N-terminal Met while the comparison results exclude the N-ternimal Met.

Hbvariants <- seqinr::read.fasta(file = "Hbvariants.fasta", seqtype = "AA",as.string = FALSE)

WT <- seqinr::read.fasta(file = "HbA.fasta", seqtype = "AA",as.string = FALSE)

Step 3: Predict the diagnostic ions by running the function

PD.result <- PredictDiag(WT,WT_ref,diag_ref,Hbvarinats)

Step 4:Output results in .csv file

write.csv(PD.result, "PredictDiag_variants20.csv", row.names = FALSE)



Linda24bc/VariantsID documentation built on April 12, 2022, 12:20 a.m.