README.md

linearReg

Travis build status codecov

Overview

linearReg is a simplified version of R function lm(), which stands for linear regression.

It currently has two functions: - linearReg() reads dependant and independant values and calculate a list of parameters of the linear model. - summary_linearReg() reads the return value of linearReg() and mimic an output of summary() function of base R lm(). It also returns the conclusion of the fitted model.

Installation

# install useing devtools from GitHub website:
devtools::install_github("LitianZhou/linearReg")

# if you want to browse vignitte, install with:
devtools::install_github("LitianZhou/linearReg", build_vignettes = T)

Use

library(linearReg)

# create test data:
set.seed(7)
X1 = rnorm(100)
X2 = rnorm(100)
Y = X1+ 3*X2 + rnorm(100,sd=2)
X= cbind(X1,X2)

# fit linear model:
model = linearReg(Y,X)

# check the results:
summary_linearReg(model)
#>  Call:
#>  linearReg(Y = X*beta)
#> 
#> Residuals:
#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
#>  -6.197  -1.199  -0.063   0.000   1.516   5.660 
#> 
#> Coefficients:
#>             Coefficients Std.error  t.value P.value
#> (Intercept)     -0.09401   0.21957 -0.42815 0.66949
#> X1               0.87602   0.22572  3.88107 0.00019
#> X2               3.31357   0.22805 14.52991 0.00000
#> 
#> ---
#> 
#> Residual standard error: 21.20694 on 97 degrees of freedom
#> Multiple R-squared: 0.7009,  Adjusted R-squared: 0.6948
#> F- statistic: 114 on 2 and 97 DF, p-value: < 2.2e-16 
#> [1] "X values are significantly associated with Y (p < 0.05)"

Getting help

There are help pages for each function, use help(linearReg) and help(summary_linearReg) to see more examples.

Otherwise, try browseVignettes("linearReg") to checkout the tutorial.



LitianZhou/linearReg documentation built on Nov. 25, 2019, 6:41 p.m.