graphID.ancestralID: Determine generic identifiability of an acyclic mixed graph...

Description Usage Arguments Value References


For an input, acyclic, mixed graph attempts to determine if the graph is generically identifiable using decomposition by ancestral subsets. See algorithm 1 of Drton and Weihs (2015).





Adjacency matrix for the directed part of the path diagram/mixed graph; an edge pointing from i to j is encoded as L[i,j]=1 and the lack of an edge between i and j is encoded as L[i,j]=0. There should be no directed self loops, i.e. no i such that L[i,i]=1.


Adjacency matrix for the bidirected part of the path diagram/mixed graph. Edges are encoded as for the L parameter. Again there should be no self loops. Also this matrix will be coerced to be symmetric so it is only necessary to specify an edge once, i.e. if O[i,j]=1 you may, but are not required to, also have O[j,i]=1.


The vector of nodes that could be determined to be generically identifiable using the above algorithm.


Drton, M. and Weihs, L. (2015) Generic Identifiability of Linear Structural Equation Models by Ancestor Decomposition. arXiv 1504.02992

Lucaweihs/SEMID documentation built on June 3, 2019, 2:13 a.m.