mora_plsc: PLSC with inferences and graphs.

Description Usage Arguments

View source: R/mora_plsc.R

Description

PLSC with inferences and graphs.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
mora_plsc(
  data1,
  data2,
  design = NULL,
  make_design_nominal = TRUE,
  col4obs = "olivedrab3",
  col4group = "olivedrab3",
  center1 = TRUE,
  center2 = TRUE,
  scale1 = "SS1",
  scale2 = "SS1",
  inference = TRUE,
  important = FALSE,
  corrplot = TRUE
)

Arguments

data1

A numerical data table with observations on rows and variables on columns.

data2

A numerical data table with the same obs on row and different vars on columns.

design

(default = NULL) A design vector or matrix for the rows

make_design_nominal

(default = TRUE) If TRUE, design is a vector. If FALSE, design is a dummy-coded matrix.

col4obs

(default = "olivedrab3") A single color or vector of colors whose length is equal to nrow(data1).

col4group

(default = "olivedrab3") A single color or vector of colors whose length is the number of groups in design.

center1

(default = TRUE) Whether to center variables in data1.

center2

(default = TRUE) Whether to center variables in data2.

scale1

(default = "SS1") Whether to scale variables in data1.

scale2

(default = "SS1") Whether to scale variables in data2.

inference

(default = TRUE) When design contains 2 or more groups, computes CI and TI on observations. FALSE if no groups.

important

(default = FALSE) If TRUE, graphs have only the important saliences/bootstrap ratios.

corrplot

(default = TRUE) Whether to show a correlation matrix plot


LukeMoraglia/moRa documentation built on July 31, 2020, 5:41 a.m.