linearc: Linearc (c++)

Description Usage Arguments Value

View source: R/RcppExports.R

Description

Computes the linear regression coefficient estimates (ridge and bridge penalization and weights, optional)

Usage

1
2
3
linearc(X, y, lam = 0, alpha = 1.5, penalty = "none", weights = 0L,
  intercept = TRUE, kernel = FALSE, method = "SVD", tol = 1e-05,
  maxit = 1e+05, vec = 0L, init = 0L)

Arguments

X

matrix

y

matrix

lam

optional tuning parameter for ridge regularization term. Defaults to 'lam = 0'

alpha

optional tuning parameter for bridge regularization term. Defaults to "alpha = 1.5"

penalty

choose from c("none", "ridge", "bridge"). Defaults to "none"

weights

optional vector of weights for weighted least squares

intercept

add column of ones if not already present. Defaults to TRUE

kernel

use linear kernel to compute ridge regression coefficeients. Defaults to TRUE when p >> n (for "SVD")

method

optimization algorithm. Choose from "SVD" or "MM". Defaults to "SVD"

tol

tolerance - used to determine algorithm convergence for "MM". Defaults to 10^-5

maxit

maximum iterations for "MM". Defaults to 10^5

vec

optional vector to specify which coefficients will be penalized

init

optional initialization for MM algorithm

Value

returns the coefficient estimates


MGallow/logitr documentation built on May 6, 2019, 12:06 a.m.