Description Usage Arguments Value
Computes the linear regression coefficient estimates (ridge and bridge penalization and weights, optional)
1 2 3 |
X |
matrix |
y |
matrix |
lam |
optional tuning parameter for ridge regularization term. Defaults to 'lam = 0' |
alpha |
optional tuning parameter for bridge regularization term. Defaults to "alpha = 1.5" |
penalty |
choose from c("none", "ridge", "bridge"). Defaults to "none" |
weights |
optional vector of weights for weighted least squares |
intercept |
add column of ones if not already present. Defaults to TRUE |
kernel |
use linear kernel to compute ridge regression coefficeients. Defaults to TRUE when p >> n (for "SVD") |
method |
optimization algorithm. Choose from "SVD" or "MM". Defaults to "SVD" |
tol |
tolerance - used to determine algorithm convergence for "MM". Defaults to 10^-5 |
maxit |
maximum iterations for "MM". Defaults to 10^5 |
vec |
optional vector to specify which coefficients will be penalized |
init |
optional initialization for MM algorithm |
returns the coefficient estimates
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.