The goal of medspacy is to perform biomedical named entity recognition, Unified Medical Language System (UMLS) concept mapping, and negation detection using the Python spaCy, scispacy, and negspacy packages.
You can install the GitHub version of medspacy with:
remotes::install_github('ML4LHS/medspacy')
library(medspacy)
#> Importing spacy...
#> Importing scispacy...
#> Importing negspacy...
#> Loading the en_core_sci_sm language model...
#> Loading NegEx...
#> Loading the UMLS entity linker... (this may take a while)
#> Adding the UMLS entity linker and NegEx to the spacy pipeline...
#>
#> Welcome to medspacy. Take a look at help(medspacy) to get started.
medspacy('This patient has diabetes and CKD stage 3 but no HTN.')
#> cui entity lemma negated
#> 1 C0030705 patient patient FALSE
#> 2 C1578486 patient patient FALSE
#> 3 C1705908 patient patient FALSE
#> 4 C1578483 patient patient FALSE
#> 5 C1550655 patient patient FALSE
#> 6 C0011847 diabetes diabete FALSE
#> 7 C0011849 diabetes diabete FALSE
#> 8 C2316787 CKD stage 3 ckd stage 3 FALSE
#> 9 C0020538 HTN htn TRUE
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.