#' @title Example 7.1 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup (p-213)
#' @name Exam7.1
#' @description Exam7.1 explains multifactor models with all factors qualitative
#' @author \enumerate{
#' \item Muhammad Yaseen (\email{myaseen208@@gmail.com})
#' \item Adeela Munawar (\email{adeela.uaf@@gmail.com})
#' }
#' @references \enumerate{
#' \item Stroup, W. W. (2012).
#' \emph{Generalized Linear Mixed Models: Modern Concepts, Methods and Applications}.
#' CRC Press.
#' }
#'
#' @seealso
#' \code{\link{DataSet7.1}}
#'
#' @import parameters
#' @import emmeans
#' @importFrom phia testInteractions
#' @importFrom car linearHypothesis
#'
#' @examples
#'
#' library(emmeans)
#' library(car)
#' data(DataSet7.1)
#'
#' DataSet7.1$a <- factor(x = DataSet7.1$a)
#' DataSet7.1$b <- factor(x = DataSet7.1$b)
#'
#' Exam7.1.lm1 <- lm(formula = y ~ a + b + a*b, data = DataSet7.1)
#' summary(Exam7.1.lm1)
#' library(parameters)
#' model_parameters(Exam7.1.lm1)
#' anova(Exam7.1.lm1)
#'
#' ##---Result obtained as in SLICE statement in SAS for a0 & a1
#' library(phia)
#' testInteractions(
#' model = Exam7.1.lm1
#' , custom = list(a = c("0" = 1))
#' , across = "b"
#' )
#'
#' testInteractions(
#' model = Exam7.1.lm1
#' , custom = list(a = c("1" = 1))
#' , across = "b"
#' )
#'
#'
#' ##---Interaction plot
#' emmip(
#' object = Exam7.1.lm1
#' , formula = a~b
#' , ylab = "y Lsmeans"
#' , main = "Lsmeans for a*b"
#' )
#'
#' #-------------------------------------------------------------
#' ## Individula least squares treatment means
#' #-------------------------------------------------------------
#' emmeans(object = Exam7.1.lm1, specs = ~a*b)
#'
#' ##---Simpe effects comparison of interaction by a
#' ## (but it doesn't give the same p-value as in article 7.4.2 page#215)
#' emmeans(object = Exam7.1.lm1, specs = pairwise~b|a)$contrasts
#'
#' pairs(emmeans(object = Exam7.1.lm1, specs = ~b|a), simple = "each", combine = TRUE)
#' pairs(emmeans(object = Exam7.1.lm1, specs = ~b|a), simple = "a")
#' pairs(emmeans(object = Exam7.1.lm1, specs = ~b|a), simple = "b")
#' pairs(emmeans(object = Exam7.1.lm1, specs = ~b|a))
#' contrast(emmeans(object = Exam7.1.lm1, specs = ~b|a))
#' emmeans(object = Exam7.1.lm1, specs = pairwise~b|a)
#' emmeans(object = Exam7.1.lm1, specs = pairwise~b|a)$contrasts
#'
#' ##---Alternative method of pairwise comparisons by
#' ## applying contrast
#' ## coefficient (gives the same p-value as in 7.4.2)
#' contrast(
#' emmeans(object = Exam7.1.lm1, specs = ~a*b)
#' , list (
#' c1 = c(1, 0, -1, 0, 0, 0)
#' , c2 = c(1, 0, 0, 0, -1, 0)
#' , c3 = c(0, 0, 1, 0, -1, 0)
#' , c4 = c(0, 1, 0, -1, 0, 0)
#' , c5 = c(0, 1, 0, 0, 0, -1)
#' , c6 = c(0, 1, 0, 0, -1, 0)
#' )
#' )
#'
#'
#' ##---Nested Model (page 216)----
#' Exam7.1.lm2 <- lm(formula = y ~ a + a %in% b, data = DataSet7.1)
#'
#' summary(Exam7.1.lm2)
#' model_parameters(Exam7.1.lm2)
#' anova(Exam7.1.lm2)
#'
#' car::linearHypothesis(Exam7.1.lm2, c("a0:b1 = a0:b2"))
#' car::linearHypothesis(Exam7.1.lm2, c("a1:b1 = a1:b2"))
#'
#' ##---Bonferroni's adjusted p-values
#' emmeans(object = Exam7.1.lm2, specs = pairwise~b|a, adjust = "bonferroni")$contrasts
#'
#' ##--- Alternative method of pairwise comparisons by
#' ## applying contrast coefficient with Bonferroni adjustment
#' contrast(
#' emmeans(object = Exam7.1.lm1, specs = ~a*b)
#' , list (
#' c1 = c(1, 0, -1, 0, 0, 0)
#' , c2 = c(1, 0, 0, 0, -1, 0)
#' , c3 = c(0, 0, 1, 0, -1, 0)
#' , c4 = c(0, 1, 0, -1, 0, 0)
#' , c5 = c(0, 1, 0, 0, 0, -1)
#' , c6 = c(0, 1, 0, 0, -1, 0)
#' )
#' , adjust = "bonferroni"
#' )
#'
#'
NULL
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.