View source: R/mr.chisq.test.R
mr.chisq.test | R Documentation |
Performs a multiple-response chi-square test as defined in Loughin and Scherer (1998) using random permutations to estimate the null distribution
mr.chisq.test(data, nperm = 2000)
data |
A data.frame of observations in rows whose first column is a factor (the categories) and subsequent columns are binary numeric or integer, each column being a response option |
nperm |
Number of permuted datasets to estimate the distribution of the statistic under the null hypothesis. See details |
nperm: The distribution of the statistic under the null hypothesis of no associations between categories and response options is estimated using nperm datasets generated thanks to random permutations of the response vectors along observations. Note that this differs from the original proposition of Loughin and Scherer (1998) who used a parametric bootstrap to do so.
A list with the following elements:
Observed multiple-response chi-square statistic
p-value of the test
Loughin, T. M., & Scherer, P. N. (1998). Testing for Association in Contingency Tables with Multiple Column Responses. Biometrics, 54(2), 630-637.
Mahieu, B., Schlich, P., Visalli, M., & Cardot, H. (2021). A multiple-response chi-square framework for the analysis of Free-Comment and Check-All-That-Apply data. Food Quality and Preference, 93.
nb.obs=200
nb.response=5
nb.category=5
vec.category=paste("C",1:nb.category,sep="")
right=matrix(rbinom(nb.response*nb.obs,1,0.25),nb.obs,nb.response)
category=sample(vec.category,nb.obs,replace = TRUE)
dset=cbind.data.frame(category,right)
dset$category=as.factor(dset$category)
mr.chisq.test(dset)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.