compute_div: compute network diversity indices

View source: R/compute_diversities.R

compute_divR Documentation

compute network diversity indices

Description

Function to compute network diversity indices based on Hill numbers following the method described in Ohlmann et al. 2019

Usage

compute_div(metanetwork, q = 1, res = NULL)

Arguments

metanetwork

object of class 'metanetwork'

q

viewpoint parameter controlling the weight given to abundant species/groups and links, default is 1

res

a vector containing the resolutions at which the diversities are computed

Details

This function compute diversity indices using Hill numbers on node and link abundances. Importantly, a viewpoint parameters q allows giving more weigth to abundant nodes/links. Given a network, we note p_q the abundance of node q (stored as node attribute ab) and \pi_{ql} interaction probability between nodes q and l (stored as edge attribute weight). The link abundance L_{ql} between nodes q and l is then:

L_{ql} = \pi_{ql}p_q p_l

Node diversity (for q = 1) is then computed as:

D(p) = \exp (\sum_q - p_q \log p_q)

Link diversity is computed as:

D(L) = \exp (\sum_{ql} - \frac{L_{ql}}{C} \log L_{ql}{C})

where C is the weighted connectance

C = \sum_{ql} \pi_{ql}p_q p_l

The overall \alpha-diversity in node abundances is (for q = 1):

A_{P} = \exp(\sum_{q=1}^{Q} \sum_{k} - \frac{P_{qk}}{P_{++}} \log(\frac{P_{qk}}{P_{++}}) - \log(K))

The overall \alpha-diversity in node abundances is (for q = 1):

A_{P} = exp(\sum_{q=1}^{Q} \sum_{k=1}^{K} - \frac{P_{qk}}{P_{++}} log ( \frac{P_{qk}}{P_{++}}) - log(K) )

where P_{++}=\sum_{k} \sum_{q} P_{qk} The overall \alpha-diversities in link abundances and link probabilities are equal to:

A_{L} = exp (\sum_{q,l=1}^{Q} \sum_{k=1}^{K} - \frac{L_{qlk}}{L_{+++}} \log (\frac{L_{qlk}}{L_{+++}}) - log(K))

where L_{+++}=\sum_{k} \sum_{q,l} L_{qlk}. The \gamma-diversity in node and link abundances are (for q = 1):

G_{P}=exp(\sum_{q=1}^{Q} -\frac{P_{q+}}{P_{++}} log (\frac{P_{q+}}{P_{++}}))

G_{L}=exp(\sum_{q,l=1}^{Q} -\frac{L_{ql+}}{L_{+++}} log(\frac{L_{ql+}}{L_{+++}}))

The \beta-diversity is then defined in a multiplicative way:

B_{P}=\frac{G_P}{A_P}

B_{L}=\frac{G_P}{A_L}

For more details on \alpha-,\beta- and \gamma-diversity, see Ohlmann et al. 2019.

Value

a data.frame

References

Ohlmann, M., Miele, V., Dray, S., Chalmandrier, L., O'connor, L., & Thuiller, W. (2019). Diversity indices for ecological networks: a unifying framework using Hill numbers. Ecology letters, 22(4), 737-747.

See Also

compute_dis()

Examples

library(metanetwork)
library(igraph)

#on angola dataset
data("meta_angola")
compute_div(meta_angola,q = 1)

#computing diversities only at Phylum level
compute_div(meta_angola,q = 1,res = "Phylum")


MarcOhlmann/metanetwork documentation built on July 1, 2023, 6:27 a.m.