Generating simulations and data:
library(TACG) set.seed(123) data('loci') data('chlens') temp <- genSimChroms(N=3, chr=17, loci=loci, minLen=200000, maxLen=10000000, datapath=NULL, chlens=chlens, save=FALSE) sims <- lapply(1:length(temp),function(i){temp[[i]]$sim}) dataset <- lapply(1:length(temp),function(i){temp[[i]]$dat})
Running segmentation algorithms:
res <- runSegAlgs(i=1, alg='DNAcopy', data=dataset[[1]], respath=NULL,saveRes=FALSE,alpha=NULL,thresh=NULL) algs <- c('DNAcopy','HMM','Haar','GLAD') indices <- 1:length(dataset) resSet <- runSegAlgsOnSet(algs=algs,indices=indices,cores=1,data=dataset,respath=NULL,save=FALSE)
Assessing results:
assessments.dnac <- assess(alg='DNAcopy',set=indices,res=resSet[1:3],sims=sims) assessments.hmm <- assess(alg='HMM',set=indices,res=resSet[4:6],sims=sims) assessments.haar <- assess(alg='Haar',set=indices,res=resSet[7:9],sims=sims) assessments.glad <- assess(alg='GLAD',set=indices,res=resSet[10:12],sims=sims)
Plotting characteristics:
Now, let's simulate a tumor with mutations according to a pre-specified mutation conditional probability matrix:
#Generating 6 mutation loci: loci <- sample(1:100000,6,replace=FALSE) chrs <- sort(sample(1:22,length(loci),replace=TRUE)) probset <- c(.6,.15,.1,.05,.05,.05) genenames <- c('gene_A','gene_B','gene_C','gene_D','gene_E','gene_F') psi <- c(.35,.28,.17,.1,.07,.03) mutationProbs <- generateMutationProbs(loci, chrs, genenames, mutually.exclusive=list(c(2,4)), probs=probset) tumor <- Tumor(psi, rounds=6, pcnv=0, mutationProbs=mutationProbs) data <- generateTumorData(tumor,snps.seq=1000000,snps.cgh=600000,mu=200,sigma.reads=25,sigma0.lrr=.15, sigma0.baf=.03,density.sigma=.1)
Let's look at the simulated tumor and visualize the data:
library(igraph) tree <- tumor@tree tree.df <- tree$tree.df seqdf <- data$seq.data somatic <- seqdf[seqdf$status=='somatic',] plot(tree$tree.obj, layout = layout.reingold.tilford) plot(somatic$VAF)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.