Code
formula_parser(xc, quo(Xt.pr.13C), quo(Xt.pr.12C))
Output
Call:
lm(formula = Xt.pr.13C ~ Xt.pr.12C, data = data)
Coefficients:
(Intercept) Xt.pr.12C
14.32184 0.01051
Code
formula_parser(xc, quo(Xt.pr.13C), quo(Xt.pr.12C), type = "Rm")
Output
Call:
lm(formula = Xt.pr.13C ~ -1 + Xt.pr.12C, data = data, weights = 1/Xt.pr.12C)
Coefficients:
Xt.pr.12C
0.01098
Code
formula_parser(xc, quo(Xt.pr.13C), quo(Xt.pr.12C), quo(flag), type = "Rm")
Output
Call:
lm(formula = Xt.pr.13C ~ -1 + Xt.pr.12C * flag, data = data,
weights = 1/Xt.pr.12C)
Coefficients:
Xt.pr.12C flagconfluent flagdivergent
0.01054 13.49926 374.36711
Xt.pr.12C:flagdivergent
-0.01053
Code
formula_parser(xc, quo(Xt.pr.13C), quo(Xt.pr.12C), type = "GLS",
transformation = "ppt")
Output
Generalized least squares fit by REML
Model: Xt.pr.13C ~ -1 + I(Xt.pr.12C/1000)
Data: data
Log-restricted-likelihood: -18982.78
Coefficients:
I(Xt.pr.12C/1000)
10.9742
Variance function:
Structure: fixed weights
Formula: ~1/I(Xt.pr.12C/1000)
Degrees of freedom: 3900 total; 3899 residual
Residual standard error: 173.5608
Code
formula_parser(tibble::add_column(xc, execution = 1), quo(Xt.pr.13C), quo(
Xt.pr.12C), type = "LME", nest = quo(file.nm), transformation = "ppt")
Output
Linear mixed-effects model fit by REML
Data: data
Log-restricted-likelihood: -18982.78
Fixed: Xt.pr.13C ~ -1 + I(Xt.pr.12C/1000)
I(Xt.pr.12C/1000)
10.9742
Random effects:
Formula: ~-1 + I(Xt.pr.12C/1000) | execution
I(Xt.pr.12C/1000)
StdDev: 0.2411059
Formula: ~-1 + I(Xt.pr.12C/1000) | file.nm %in% execution
I(Xt.pr.12C/1000) Residual
StdDev: 0.2411059 173.5608
Variance function:
Structure: fixed weights
Formula: ~1/I(Xt.pr.12C/1000)
Number of Observations: 3900
Number of Groups:
execution file.nm %in% execution
1 1
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.