Description Usage Arguments Value See Also Examples
Run a saved MaxEnt model on a the image data selected.
1 2 | Run_model(predictor_dir, text_train_dir, MaxEntmodel_dir, fname_MaxEntmodel_r,
output_dir, rastername, model_type, EOS)
|
predictor_dir |
Path where predictor layers are held, rasters. If EOS = FALSE predictor_dir is a path if EOS = True predictor_dir is the path plus the image to predict |
text_train_dir |
Path where .tifs of the textures associated with r_train_dir. It is really important to avoid errors on the execution to pass the same numer of textures per tile as in the MaxEnt model used |
MaxEntmodel_dir |
Path where the MaxEnt model file is held |
fname_MaxEntmodel_r |
Filename of the MaxEnt model saved in rdsdata format |
output_dir |
Path to write the output to |
rastername |
Character. Prefix to give the outputed raster image, for control versions |
model_type |
Character. Type of model of maxent you want to use: raw, logistic or cloglog |
EOS |
If EOS true the for loop will be avoided if False will work with a for loop. Default FALSE |
A raster image for each tile with the probabilities or cummulative probabilities of presence for each class
Depends on: calibrate_model.r
1 2 3 4 5 6 7 8 9 10 11 | ## Not run:
Run_model(predictor_dir = "/H03_CANHEMON/Imagery/Portugal/ADS100/ortophotos_06032017/geotif/pt616000-4404000.tif",
text_train_dir <-'/home/martlur/Documents/TexturesAds/',
MaxEntmodel_dir = "/home/martlur/Documents/Dockers/docker6EOS/",
fname_MaxEntmodel_r = "samp10000_Pb.rdsdata",
output_dir = "/DATA/Results/Rcode/OutputRunSickTree",
rastername = "samp1000_",
model_type = 'cloglog',
loop = FALSE)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.