filter_mots_cles <- function(dataset, mots){
dataset %>%
filter(keyword %in% mots)
}
gg_trends_graph <- function(dataset, title){
dataset %>%
ggplot(aes(date, hits, color = keyword)) +
geom_line() +
geom_smooth(span = 0.3, se = FALSE) +
theme_tq() +
scale_color_tq() +
labs(title = title)
}
creer_dataset <- function(liste_termes,time,arg_pluck){
liste_termes%>%
gtrends(geo = "FR", time = time,onlyInterest = TRUE)%>%
pluck(arg_pluck) %>%
dplyr::mutate(hits = as.numeric(hits)) %>%
as_tibble()
}
creer_dataset_related <- function(liste_termes,time,arg_pluck){
liste_termes %>%
gtrends(geo = "FR", time = time) %>%
pluck(arg_pluck) %>%
# pluck("related_queries") %>%
as_tibble()
}
determine_top_words <- function(liste_termes,time) {
creer_dataset_related(liste_termes = liste_termes,
time = time,
arg_pluck = "related_queries") %>%
filter(related_queries == "top") %>%
dplyr::mutate(interest = as.numeric(subject)) %>%
select(keyword, value, interest) %>%
group_by(keyword) %>%
arrange(desc(interest)) %>%
slice(1:n_terms) %>%
dplyr::ungroup() %>%
mutate(value = as_factor(value) %>% fct_reorder(interest))
}
filter_top_words <- function(dataset,liste_termes){
dataset %>%
filter(keyword %in% liste_termes)
}
gg_top_words <- function(liste_top_words){
liste_top_words %>%
ggplot(aes(value, interest, color = keyword)) +
geom_segment(aes(xend = value, yend = 0)) +
geom_point() +
coord_flip() +
facet_wrap(~ keyword, ncol = 1, scales = "free_y") +
theme_tq() +
scale_color_tq()+
labs(x = " ",y = " ")
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.