library(MMRFBiolinks)
library(TCGAbiolinks) library(SummarizedExperiment) library(dplyr) library(DT) library(png) library(grid)
You can easily analyze data using following functions:
MMRFanalyzeGDC_Preprocessing
: Preprocessing of Gene Expression dataYou can easily search TCGA samples, download and prepare a matrix of gene expression.
# You can define a list of samples to query and download providing relative TCGA barcodes. listSamples <- c("MMRF_2473","MMRF_2111", "MMRF_2362","MMRF_1824", "MMRF_1458","MRF_1361", "MMRF_2203","MMRF_2762", "MMRF_2680","MMRF_1797") # Query platform Illumina HiSeq with a list of barcode query <- GDCquery(project = "MMRF-COMMPASS", data.category = "Transcriptome Profiling", data.type = "Gene Expression Quantification", experimental.strategy = "RNA-Seq", workflow.type="HTSeq - FPKM", barcode = listSamples) # Download GDCdownload(query) # Prepare expression matrix with geneID in the rows and samples (barcode) in the columns MMRnaseqSE <- MMRFGDC_prepare(query, save = TRUE , save.filename = "RNASeqSE.rda" , directory = "GDCdata", summarizedExperiment = TRUE) MMmatrix <- assays(MMRnaseqSE,"raw_count") # For gene expression if you need to see a boxplot correlation and AAIC plot to define outliers you can run MMRnaseq_CorOutliers <- MMRFanalyze_Preprocessing(MMRnaseqSE)
The result from MMRFanalyzeGDC_Preprocessing is shown below:
img <- readPNG("MMRF_PreprocessingOutput.png") grid.raster(img)
TCGAanalyzeGDC_SurvivalKM
: Correlating gene expression and Survival Analysis#library(TCGAbiolinks) # Survival Analysis SA clinical_patient_Cancer <- MMRFquery_clinic(type = "clinical") dataMMcomplete <- log2(dataMM) tokenStop<- 1 tabSurvKMcomplete <- NULL for( i in 1: round(nrow(dataMMcomplete)/100)){ message( paste( i, "of ", round(nrow(dataMMcomplete)/100))) tokenStart <- tokenStop tokenStop <-100*i tabSurvKM<-TCGAanalyze_SurvivalKM(clinical_patient_Cancer, dataMMcomplete, Genelist = rownames(dataMMcomplete)[tokenStart:tokenStop], Survresult = F, ThreshTop=0.67, ThreshDown=0.33) tabSurvKMcomplete <- rbind(tabSurvKMcomplete,tabSurvKM) } tabSurvKMcomplete <- tabSurvKMcomplete[tabSurvKMcomplete$pvalue < 0.01,] tabSurvKMcomplete <- tabSurvKMcomplete[order(tabSurvKMcomplete$pvalue, decreasing=F),] tabSurvKMcompleteDEGs <- tabSurvKMcomplete[ rownames(tabSurvKMcomplete) %in% dataDEGsFiltLevel$mRNA, ]
The result is shown below:
tabSurvKMcompleteDEGs$pvalue <- format(tabSurvKMcompleteDEGs$pvalue, scientific = TRUE) knitr::kable(tabSurvKMcompleteDEGs[1:5,1:4], digits = 2, caption = "Table KM-survival genes after SA", row.names = TRUE) knitr::kable(tabSurvKMcompleteDEGs[1:5,5:7], digits = 2, row.names = TRUE)
You can easily analyze data using following functions:
MMRFgetGateway_BestOverallResponsePlot
: draw plot of the Best Overall Response to the TreatmentMMRFgetGateway_BestOverallResponsePlot(clinMMGateway)
img <- readPNG("MMRF_TreatResp.png") grid.raster(img)
MMRFgetGateway_BestOverallResponsePlot(clinMMGateway,"Bortezomib")
img <- readPNG("MMRF_TreatRespFilt.png") grid.raster(img)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.