knitr::opts_chunk$set(fig.cap = NULL, fig.path = params$output_figure) library(data.table) library(ggplot2) library(ggrepel) library(GGally) library(umap) library(FactoMineR) library(factoextra) library(corrplot) library(viridis) library(ggpubr) library(Hmisc) library(plotly) library(stringr) library(bit64) num_files <- expdes[, .N] run_per_condition <- expdes[, .(countRepMax = .N), by = .(experiment)] setnames(run_per_condition, "experiment", "condition") # for fractions, create file name from mqExperiment and Fraction if (!("file_name" %in% colnames(expdes))){ expdes$file_name = paste(expdes$experiment, " - ", expdes$Replicate) } prot_int_rep <- merge( run_per_condition, prot_int[Imputed == 0, .(Repcount = .N), by = .(id, condition)], by = c("condition") ) prot_int_rep[, repPC := Repcount/countRepMax] prot_id_in_a_cond <- prot_int_rep[repPC >= 0.5, unique(id)] prot_int[, Valid := 0L] prot_int[id %in% prot_id_in_a_cond, Valid := 1L] rm(prot_id_in_a_cond, prot_int_rep)
pca_dt <- prot_int[Valid == 1, .( id, condition, Replicate, log2NInt, run_id )]
name_of_column <- colnames(prot)[colnames(prot) == "adj.P.Val"] if (!identical(name_of_column, character(0)) && prot[get(name_of_column) <= 0.05, .N] > 1) { DE_ids <- prot[get(name_of_column) <= 0.05, unique(id)] pca_dt <- prot_int[id %in% DE_ids, .( id, condition, Replicate, log2NInt )] pca_dt <- dcast(pca_dt, condition + Replicate ~ id, value.var = "log2NInt") num_dimensions = min(pca_dt[, .N-1], 10) res.pca <- PCA(pca_dt[, 3:ncol(pca_dt)], graph = FALSE, ncp = num_dimensions) eig.val <- get_eigenvalue(res.pca) eig.val <- data.table(dims = rownames(eig.val), eig.val) samples.pca <- get_pca_ind(res.pca) samples.coord <- data.table(pca_dt[, 1:2], samples.pca$coord) samples.coord[, Run := str_c(condition, Replicate, sep = " - ")] #if no fracs samples.coord = merge(samples.coord, expdes, by.x = c("condition", "Replicate"), by.y = c("experiment", "Replicate")) label = "file_name" p <- ggplot(samples.coord, aes(x = Dim.1, y=Dim.2, colour=condition, fill=condition, label=Run)) + stat_ellipse(geom = "polygon", alpha=0.1) + geom_point(size = 3, alpha = 0.7) + theme_minimal() + scale_x_continuous(str_c("PCA 1 - ", eig.val[dims == "Dim.1", round(variance.percent,1)], "%")) + scale_y_continuous(str_c("PCA 2 - ", eig.val[dims == "Dim.2", round(variance.percent,1)], "%")) + ggtitle(str_c("PCA plot using the ", length(DE_ids), " differentially expressed proteins")) ggplotly(p, tooltip = c("label")) %>% config(displayModeBar = T, modeBarButtons = list(list('toImage')), displaylogo = F) }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.