Man pages for MatheMax/OptReSample
Computing Optimal Adaptive Designs

bA simplified version of the function b that is defined in the...
c2Computing optimal c_2-values
c_earlyOptimal Stopping Boundaries
cond_powerComputing conditional power
cond_power_designDefines design based on conditional power
d_ced Score / d c_e
d_cfd Score / d c_f
designCreating design objects
direct_designFind the optimal design via direct optimization
direct_design_smoothCompute smooth designs via the direct method
dr_designCompute designs for delayed response situation
errEvaluate the deviation of the desired error constraints
exp_nComputing the expected sample size for an effect size
find_lambdaFind the correct values of lambda
find_lambda_directFind lambda values faster
fixedCompute the fixed design
helloHello, World!
inverse_normal_designCompute optimal sample size based on inverse normal method
jt_designCompute the design by Jennison and Turnbull (2015)
lagrange_designFind the optimal Lagrangian design
lagrange_dr_designOptimal design in delayed response situation
lambda_startStarting values for lambda
n1Find the optimal stage one sample size
n2Compute n_2 function
nodesDefine equi distance nodes
omegaDefine weights for Milne integration
opt_alphaCompute the type I error rate of a design
optimal_designCompute an optimal adaptive design
optimal_gsdCompute the optimal group sequential design
optimal_inverse_normal_designCompute the optimal design based on the inverse normal...
opt_powerCompute the power of a design
parametersCreating parameters object
plot_c2Plot the c2-function
plot_cond_powerPlotting conditional power
plot_exp_nPlotting expected sample size
plot_nPlotting total sample size
plot_n2Plot the n2 function
plot_powerPlot power dependent on true effect
real_powerComputing the conditional power for differnt true effect...
responseCompute concrete n_2-value
scoreScore in the Lagrangian framework
score_directCompute the score
score_direct_smoothScore version for smooth direct designs
score_smoothSmooth score version
stage_twoCompute optimal stage two values for given first stage
t_designFind the optimal design when using a t-approximation
t_scoreVersion of the score when using t-approximation
t_type_oneType one error when using t-approximation
t_type_twoType two error when using t-approximation
type_oneCompute the type I error
type_one_smoothType I version for smooth direct designs
type_twoCompute the type II error
type_two_smoothType II version for smooth direct designs
MatheMax/OptReSample documentation built on May 5, 2019, 8:14 a.m.