Description Usage Arguments Examples
View source: R/monitor_forecastPlot.R
Plots monitor data and overlays models of the bluesky forecasts.
For each model, a timeseries is created by gathering count
grid cells
within radius
meters of the ws_monitor
. The resulting set of
timeseries are then collapsed into a single timeseries by applying the
quantile()
using the user specified probability prob
.
1 2 3 4 5 6 7 8 9 10 11 | monitor_forecastPlot(
ws_monitor,
modelName = NULL,
modelMode = "forecast",
baseUrl = "https://haze.airfire.org/bluesky-daily/output/standard",
radius = 20,
count = 9,
prob = 0.5,
verbose = TRUE,
...
)
|
ws_monitor |
ws_monitor object. |
modelName |
Model identifier(s). |
modelMode |
Subdirectory path containing BlueSky output, i.e. 'forcast'. |
baseUrl |
Base URL for BlueSky output. |
radius |
Distance (km) of radius from target location. |
count |
Number of grid cells within radius to return. |
prob |
Quantile probability used when plotting model data. |
verbose |
Logical to display messages. |
... |
Additional arguments passed to
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | library(PWFSLSmoke)
initializeMazamaSpatialUtils()
library(AirFireModeling)
setModelDataDir('~/Data/Bluesky')
San_Pablo <-
monitor_load(20191025, 20191029) %>%
monitor_subset(monitorIDs = '060131004_01')
models <- bluesky_findModels(
San_Pablo$meta$longitude,
San_Pablo$meta$latitude
)
monitor_forecastPlot(
San_Pablo,
modelName = models
)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.