monitor_forecastPlot: Compare forecasts

Description Usage Arguments Examples

View source: R/monitor_forecastPlot.R

Description

Plots monitor data and overlays models of the bluesky forecasts.

For each model, a timeseries is created by gathering count grid cells within radius meters of the ws_monitor. The resulting set of timeseries are then collapsed into a single timeseries by applying the quantile() using the user specified probability prob.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
monitor_forecastPlot(
  ws_monitor,
  modelName = NULL,
  modelMode = "forecast",
  baseUrl = "https://haze.airfire.org/bluesky-daily/output/standard",
  radius = 20,
  count = 9,
  prob = 0.5,
  verbose = TRUE,
  ...
)

Arguments

ws_monitor

ws_monitor object.

modelName

Model identifier(s).

modelMode

Subdirectory path containing BlueSky output, i.e. 'forcast'.

baseUrl

Base URL for BlueSky output.

radius

Distance (km) of radius from target location.

count

Number of grid cells within radius to return.

prob

Quantile probability used when plotting model data.

verbose

Logical to display messages.

...

Additional arguments passed to PWFSLSmoke::monitor_timeseriesPlot().

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
library(PWFSLSmoke)
initializeMazamaSpatialUtils()

library(AirFireModeling)
setModelDataDir('~/Data/Bluesky')

San_Pablo <-
  monitor_load(20191025, 20191029) %>%
  monitor_subset(monitorIDs = '060131004_01')

models <- bluesky_findModels(
  San_Pablo$meta$longitude,
  San_Pablo$meta$latitude
)

monitor_forecastPlot(
  San_Pablo,
  modelName = models
)

MazamaScience/AirFireModeling documentation built on March 13, 2021, 12:02 a.m.