knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
library(MeanFlowData)
Mean Cell Type Findings from Flow Cytometry Data
Function 1 Split Data by Genotype
Split_Gen_Funct<- function(df, vect){ Split_Genotype.df<- split(df, vect) return(Split_Genotype.df) }
Use function in main script
Split_Genotype_list<- Split_Gen_Funct(SC_Data, SC_Data$Genotype) #mainScript to convert the separated list into dataframes Het_df<- as.data.frame(Split_Genotype_list[[1]]) KO_df<- as.data.frame(Split_Genotype_list[[2]]) WT_df<- as.data.frame(Split_Genotype_list[[3]]) #remove first two columns so we can take the mean of each column: Het_df<- Het_df[,3:14] KO_df<- KO_df[,3:14] WT_df<- WT_df[,3:14]
Function 2 Take the mean of each cell type per genotype (mean of each column)
Call the function and create a matrix for each mean set
#call the function and create a matrix for each mean set Het_means<- ColMean_funct(Het_df) KO_means<- ColMean_funct(KO_df) WT_means<- ColMean_funct(WT_df) #combine the means to create matrix for function3 TotalMeans<- cbind(Het_means, KO_means, WT_means)
Function 3 Visualize Data in a barplot to compare cell types
barplot_funct<- function(matrix){ bar.plot<- barplot(matrix, width= 0.01, beside=TRUE, main='Mean Flow Cytometry Cell Count', xlab='Cell Types (WT, Het, KO)', ylab="Cell Count (%)", col=topo.colors(12)) legend("topright", ncol=4, cex=0.75, inset=.02, title="Cell Type", c("C1","C2","C3","C4", "C5", "C6", "C7", "C8", "C9","C10", "C11", "C12"), fill=topo.colors(12)) return(bar.plot) }
Call function to create graph
barplot_funct(TotalMeans)
Figure 1: Compare mean cell types C1-C12 from Flow Cytometry analysis
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.