For illustration purpose I present in this section the result of the analysis for the case of Israel.
ggplot(country_df %>% filter(Country == "Israel") %>% select(Date, Total_Credit_real, HousePrice, GDP_real, FD) %>% rename(Credit = Total_Credit_real, GDP = GDP_real) %>% mutate(GDP = GDP * 10 ^ (-3)) %>% gather(key = Indicator, value = Val, -Date), aes(x = Date, y = Val, group = Indicator)) + geom_line() + labs(x = "", y = "", title = "Main indicators for Israel") + theme_bw() + theme(axis.text.x = element_text(angle = 90, size = 5), plot.title = element_text(hjust = 0.5)) + facet_wrap(~Indicator, scales = "free")
The distribution of Israel's bilateral cross border credit is shown in figure \ref{plot_israel_bank_linkages}. Israel's cross border credit is quite concentrated: United states is the largest counterparty followed by Switzerland and United Kingdom.
```r", fig.pos="H"}
net_df = raw_data$bis_lbs %>% filter(grepl("Israel",CountryPair)) %>% filter(Date == as.yearqtr("2018 Q4")) %>% select(CountryPair, Balance) %>% group_by(CountryPair) %>% summarise(Balance = mean(Balance, na.rm = TRUE) * 10 ^ (-3)) %>% ungroup() %>% mutate(CountryPair = gsub("Israel","",CountryPair)) %>% mutate(CountryPair = gsub("-","",CountryPair)) %>% mutate(CountryPair = gsub("\s","",CountryPair)) %>% rename(Country = CountryPair)
ggplot(net_df, aes(x = reorder(Country, Balance), y = Balance)) + geom_bar(stat = "identity") + scale_y_continuous(label = comma) + labs(x = "", y = "Total cross border bilateral credit (USD billions)", title = paste("Israel's total cross border bilateral credit", " counterparties in 2018 Q4")) + theme_bw() + theme(plot.title = element_text(hjust = 0.5)) + coord_flip()
Figure \ref{plot_israel_us} shows the correlation between financial synchronization and banking integration for Israel - United States pair (United States was the largest Israel's counterpart in 2018). In order to control for the effect of other factors I first regress financial synchronization and banking integration on control variables set (including fixed effect). The figure plots the residuals of this first step regressions.
```r", fig.pos="H"}
bank_clean = plm(sub("Fin_synch","bank_gdp",
gsub("lag(bank_gdp,1) *","",reg_formula, fixed = TRUE),
fixed = TRUE),
data = fin_reg_df, index = c("CountryPair","Date"),
model = "within", effect = "twoways")
synch_clean = plm(gsub("lag(bank_gdp,1) *","",reg_formula, fixed = TRUE),
data = fin_reg_df, index = c("CountryPair","Date"),
model = "within", effect = "twoways")
df_clean = list(bank_clean$model$CountryPair,
bank_clean$residuals, synch_clean$residuals) %>%
reduce(cbind.data.frame) %>%
setNames(c("CountryPair","Bank","FinSynch"))
ggplot(df_clean %>%
filter(CountryPair == "Israel-United_States"),
aes(x = Bank, y = FinSynch)) +
geom_point() +
labs(x = "Banking integration (log of bank credit to gdp)",
y = "Financial synchronization (percent)",
title = "Israel-United States \n (netting fixed effects and controls)") +
geom_smooth(method = "lm", se = FALSE) +
theme_bw() +
theme(plot.title = element_text(hjust = 0.5))
The effect of banking linkages in Israel sub sample is similiar to the effect in the total sample. A one standard deviation change in banking linkages reduces the synchronization by r abs(round(coef_vec[names(coef_vec) == "lag(bank_gdp, 1)"] * sd_ratio_isr,2)) standard deviations.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.