hjk_nll_wrapper: A wrapper for calculating the negative log-likehood in...

Description Usage Arguments Value

View source: R/multivariate_models.R

Description

This wrapper function for doing the multivariate negative log-likelihood calculation accomplishes three things. First, if the negative log-likelihood evaluates to NA it replaces the value with Inf. Second, it rescales the normalized, input parameter vector (param) to account for the offset (th_y_bar0) and scale (th_y_bar_scale); in particular, the rescaling is param = th_y_bar0 + param*th_y_bar_scale. Third (optionally), it saves to file progress information on the optimization (notably, the best fit found so far). This progress information can be used resume interupted optimizations.

Usage

1
2
3
4
5
6
7
8
hjk_nll_wrapper(
  param,
  th_y_bar0,
  th_y_bar_scale,
  calc_data,
  tf_cat_vect,
  save_file = NA
)

Arguments

param

The normalized parameter vector

th_y_bar0

The offset to use for the normalized parameter vector

th_y_bar_scale

The scaling to use for the normalized parameter vector

calc_data

The calculation data that support rapid calculation of the negative log-likelihood

tf_cat_vect

The transform category vector so that the optimization can be uncsontrained

save_file

(default: NA, none used) A save file to capture optimization progress

Value

The negative log-likelihood


MichaelHoltonPrice/yada documentation built on Sept. 19, 2021, 11:27 p.m.