TSHT.sumstats: TSHT using summary statistics

View source: R/MR.TSHT.R

TSHT.sumstatsR Documentation

TSHT using summary statistics

Description

Conduct two-stage hard thresholding using summary statistics

Usage

TSHT.sumstats(
  ITT_D,
  ITT_Y,
  SE_D,
  SE_Y,
  n1,
  n2,
  tuning = 2.01,
  max_clique = TRUE,
  alpha = 0.05
)

Arguments

ITT_D

a numeric vector of GWAS summary statistics of the treatment

ITT_Y

a numeric vector of GWAS summary statistics of the outcome

SE_D

a numeric vector of standard errors of ITT_D

SE_Y

a numeric vector of standard errors of ITT_Y

n1

the sample size of GWAS summary statistics of the treatment

n2

the sample size of GWAS summary statistics of the outcome

tuning

a numeric scalar value tuning parameter for TSHT, with default 1

max_clique

an option to replace the majority and plurality voting procedures with finding maximal clique in the IV voting matrix, with default FALSE

alpha

a numeric scalar value between 0 and 1 indicating the significance level for the confidence interval, with default 0.05

Value

VHat

a numeric vector denoting the set of valid and relevant IVs

betaHat

a numeric scalar denoting the estimate of treatment effect.

seHat

a numeric scalar denoting the estimated standard error of betaHat.

ci

a two dimensional numeric vector denoting the 1-alpha confidence intervals for betaHat with lower and upper endpoints.


MinhaoYaooo/MR.TSHT documentation built on May 22, 2022, 7:19 a.m.