stack_metrics | R Documentation |
Stack metrics sums parity loss metrics for all models. Higher value of stacked metrics means the model is less fair (has higher bias) for subgroups from protected vector.
stack_metrics(x, fairness_metrics = c("ACC", "TPR", "PPV", "FPR", "STP"))
x |
object of class |
fairness_metrics |
character, vector of fairness parity_loss metric names to include in plot. Full names are provided in |
stacked_metrics
object. It contains data.frame
with information about score for each metric and model.
data("german")
y_numeric <- as.numeric(german$Risk) - 1
lm_model <- glm(Risk ~ .,
data = german,
family = binomial(link = "logit")
)
explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric)
fobject <- fairness_check(explainer_lm,
protected = german$Sex,
privileged = "male"
)
sm <- stack_metrics(fobject)
plot(sm)
rf_model <- ranger::ranger(Risk ~ .,
data = german,
probability = TRUE,
num.trees = 200
)
explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric)
fobject <- fairness_check(explainer_rf, fobject)
sm <- stack_metrics(fobject)
plot(sm)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.