random_search: Random optimization of hyperparameters

View source: R/random_search.R

random_searchR Documentation

Description

Random optimization of hyperparameters

Usage

random_search(
  train_data,
  y = NULL,
  time = NULL,
  status = NULL,
  engine,
  type,
  max_evals = 10,
  parallel = FALSE,
  verbose = FALSE
)

Arguments

train_data

A training data for models created by 'prepare_data()' function.

y

A string that indicates a target column name for regression or classification. Either y, or pair: time, status can be used.

time

A string that indicates a time column name for survival analysis task. Either y, or pair: time, status can be used.

status

A string that indicates a status column name for survival analysis task. Either y, or pair: time, status can be used.

engine

A vector of tree-based models that shall be created. Possible values are: ‘ranger', 'xgboost','decision_tree', 'lightgbm', 'catboost'. Doesn’t matter for survival analysis.

type

A string that determines if Machine Learning task is the 'binary_clf', 'regression', 'survival', or 'multiclass' task.

max_evals

The number of trained models for each model type in 'engine'.

parallel

A logical value, if set to TRUE, the function will use parallel computing. By default set to FALSE.

verbose

A logical value, if set to TRUE, provides all information about the process, if FALSE gives none. Set to FALSE by default.

Value

A list consisting of models created via random search and ranked list of models scores.


ModelOriented/forester documentation built on June 6, 2024, 7:29 a.m.