View source: R/cluster_profiles.R
| cluster_profiles | R Documentation | 
This function calculates aggregates of ceteris paribus profiles based on hierarchical clustering.
cluster_profiles( x, ..., aggregate_function = mean, variable_type = "numerical", center = FALSE, k = 3, variables = NULL )
| x | a ceteris paribus explainer produced with function  | 
| ... | other explainers that shall be plotted together | 
| aggregate_function | a function for profile aggregation. By default it's  | 
| variable_type | a character. If  | 
| center | shall profiles be centered before clustering | 
| k | number of clusters for the hclust function | 
| variables | if not  | 
Find more detailes in the Clustering Profiles Chapter.
an object of the class aggregated_profiles_explainer
Explanatory Model Analysis. Explore, Explain, and Examine Predictive Models. https://ema.drwhy.ai/
library("DALEX")
library("ingredients")
selected_passangers <- select_sample(titanic_imputed, n = 100)
model_titanic_glm <- glm(survived ~ gender + age + fare,
                         data = titanic_imputed, family = "binomial")
explain_titanic_glm <- explain(model_titanic_glm,
                               data = titanic_imputed[,-8],
                               y = titanic_imputed[,8])
cp_rf <- ceteris_paribus(explain_titanic_glm, selected_passangers)
clust_rf <- cluster_profiles(cp_rf, k = 3, variables = "age")
plot(clust_rf)
library("ranger")
model_titanic_rf <- ranger(survived ~., data = titanic_imputed, probability = TRUE)
explain_titanic_rf <- explain(model_titanic_rf,
                              data = titanic_imputed[,-8],
                              y = titanic_imputed[,8],
                              label = "ranger forest",
                              verbose = FALSE)
cp_rf <- ceteris_paribus(explain_titanic_rf, selected_passangers)
cp_rf
pdp_rf <- aggregate_profiles(cp_rf, variables = "age")
head(pdp_rf)
clust_rf <- cluster_profiles(cp_rf, k = 3, variables = "age")
head(clust_rf)
plot(clust_rf, color = "_label_") +
  show_aggregated_profiles(pdp_rf, color = "black", size = 3)
plot(cp_rf, color = "grey", variables = "age") +
  show_aggregated_profiles(clust_rf, color = "_label_", size = 2)
clust_rf <- cluster_profiles(cp_rf, k = 3, center = TRUE, variables = "age")
head(clust_rf)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.