View source: R/unify_randomForest.R
| randomForest.unify | R Documentation | 
Convert your randomForest model into a standardized representation.
The returned representation is easy to be interpreted by the user and ready to be used as an argument in treeshap() function.
randomForest.unify(rf_model, data)
| rf_model | An object of  | 
| data | Reference dataset. A  | 
Binary classification models with a target variable that is a factor with two levels, 0 and 1, are supported
a unified model representation - a model_unified.object object
lightgbm.unify for LightGBM models
gbm.unify for GBM models
xgboost.unify for XGBoost models
ranger.unify for ranger models
library(randomForest)
data_fifa <- fifa20$data[!colnames(fifa20$data) %in%
                           c('work_rate', 'value_eur', 'gk_diving', 'gk_handling',
                             'gk_kicking', 'gk_reflexes', 'gk_speed', 'gk_positioning')]
data <- na.omit(cbind(data_fifa, target = fifa20$target))
rf <- randomForest::randomForest(target~., data = data, maxnodes = 10, ntree = 10)
unified_model <- randomForest.unify(rf, data)
shaps <- treeshap(unified_model, data[1:2,])
# plot_contribution(shaps, obs = 1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.